Copied to
clipboard

G = D8xC3:S3order 288 = 25·32

Direct product of D8 and C3:S3

direct product, metabelian, supersoluble, monomial

Aliases: D8xC3:S3, C24:5D6, C3:4(S3xD8), (C3xD4):3D6, (C3xD8):2S3, C32:5D8:8C2, C32:12(C2xD8), (C3xC24):9C22, C6.118(S3xD4), (C32xD8):5C2, C32:7D8:5C2, C3:Dic3.48D4, C12:S3:7C22, C12.87(C22xS3), (C3xC12).91C23, (D4xC32):7C22, C32:4C8:20C22, C8:4(C2xC3:S3), (C8xC3:S3):3C2, (D4xC3:S3):3C2, D4:1(C2xC3:S3), C2.15(D4xC3:S3), (C2xC3:S3).72D4, C4.1(C22xC3:S3), (C3xC6).239(C2xD4), (C4xC3:S3).70C22, SmallGroup(288,767)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D8xC3:S3
C1C3C32C3xC6C3xC12C4xC3:S3D4xC3:S3 — D8xC3:S3
C32C3xC6C3xC12 — D8xC3:S3
C1C2C4D8

Generators and relations for D8xC3:S3
 G = < a,b,c,d,e | a8=b2=c3=d3=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 1236 in 228 conjugacy classes, 57 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, D4, C23, C32, Dic3, C12, D6, C2xC6, C2xC8, D8, D8, C2xD4, C3:S3, C3:S3, C3xC6, C3xC6, C3:C8, C24, C4xS3, D12, C3:D4, C3xD4, C22xS3, C2xD8, C3:Dic3, C3xC12, C2xC3:S3, C2xC3:S3, C62, S3xC8, D24, D4:S3, C3xD8, S3xD4, C32:4C8, C3xC24, C4xC3:S3, C12:S3, C32:7D4, D4xC32, C22xC3:S3, S3xD8, C8xC3:S3, C32:5D8, C32:7D8, C32xD8, D4xC3:S3, D8xC3:S3
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C3:S3, C22xS3, C2xD8, C2xC3:S3, S3xD4, C22xC3:S3, S3xD8, D4xC3:S3, D8xC3:S3

Smallest permutation representation of D8xC3:S3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 23)(18 22)(19 21)(25 29)(26 28)(30 32)(33 35)(36 40)(37 39)(41 47)(42 46)(43 45)(50 56)(51 55)(52 54)(58 64)(59 63)(60 62)(65 69)(66 68)(70 72)
(1 13 20)(2 14 21)(3 15 22)(4 16 23)(5 9 24)(6 10 17)(7 11 18)(8 12 19)(25 51 46)(26 52 47)(27 53 48)(28 54 41)(29 55 42)(30 56 43)(31 49 44)(32 50 45)(33 70 60)(34 71 61)(35 72 62)(36 65 63)(37 66 64)(38 67 57)(39 68 58)(40 69 59)
(1 27 61)(2 28 62)(3 29 63)(4 30 64)(5 31 57)(6 32 58)(7 25 59)(8 26 60)(9 49 38)(10 50 39)(11 51 40)(12 52 33)(13 53 34)(14 54 35)(15 55 36)(16 56 37)(17 45 68)(18 46 69)(19 47 70)(20 48 71)(21 41 72)(22 42 65)(23 43 66)(24 44 67)
(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 65)(56 66)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,47)(42,46)(43,45)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(65,69)(66,68)(70,72), (1,13,20)(2,14,21)(3,15,22)(4,16,23)(5,9,24)(6,10,17)(7,11,18)(8,12,19)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,70,60)(34,71,61)(35,72,62)(36,65,63)(37,66,64)(38,67,57)(39,68,58)(40,69,59), (1,27,61)(2,28,62)(3,29,63)(4,30,64)(5,31,57)(6,32,58)(7,25,59)(8,26,60)(9,49,38)(10,50,39)(11,51,40)(12,52,33)(13,53,34)(14,54,35)(15,55,36)(16,56,37)(17,45,68)(18,46,69)(19,47,70)(20,48,71)(21,41,72)(22,42,65)(23,43,66)(24,44,67), (9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,47)(42,46)(43,45)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(65,69)(66,68)(70,72), (1,13,20)(2,14,21)(3,15,22)(4,16,23)(5,9,24)(6,10,17)(7,11,18)(8,12,19)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,70,60)(34,71,61)(35,72,62)(36,65,63)(37,66,64)(38,67,57)(39,68,58)(40,69,59), (1,27,61)(2,28,62)(3,29,63)(4,30,64)(5,31,57)(6,32,58)(7,25,59)(8,26,60)(9,49,38)(10,50,39)(11,51,40)(12,52,33)(13,53,34)(14,54,35)(15,55,36)(16,56,37)(17,45,68)(18,46,69)(19,47,70)(20,48,71)(21,41,72)(22,42,65)(23,43,66)(24,44,67), (9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,23),(18,22),(19,21),(25,29),(26,28),(30,32),(33,35),(36,40),(37,39),(41,47),(42,46),(43,45),(50,56),(51,55),(52,54),(58,64),(59,63),(60,62),(65,69),(66,68),(70,72)], [(1,13,20),(2,14,21),(3,15,22),(4,16,23),(5,9,24),(6,10,17),(7,11,18),(8,12,19),(25,51,46),(26,52,47),(27,53,48),(28,54,41),(29,55,42),(30,56,43),(31,49,44),(32,50,45),(33,70,60),(34,71,61),(35,72,62),(36,65,63),(37,66,64),(38,67,57),(39,68,58),(40,69,59)], [(1,27,61),(2,28,62),(3,29,63),(4,30,64),(5,31,57),(6,32,58),(7,25,59),(8,26,60),(9,49,38),(10,50,39),(11,51,40),(12,52,33),(13,53,34),(14,54,35),(15,55,36),(16,56,37),(17,45,68),(18,46,69),(19,47,70),(20,48,71),(21,41,72),(22,42,65),(23,43,66),(24,44,67)], [(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,65),(56,66)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A6B6C6D6E···6L8A8B8C8D12A12B12C12D24A···24H
order1222222233334466666···688881212121224···24
size1144993636222221822228···822181844444···4

42 irreducible representations

dim11111122222244
type++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D8S3xD4S3xD8
kernelD8xC3:S3C8xC3:S3C32:5D8C32:7D8C32xD8D4xC3:S3C3xD8C3:Dic3C2xC3:S3C24C3xD4C3:S3C6C3
# reps11121241148448

Matrix representation of D8xC3:S3 in GL6(F73)

100000
010000
0072000
0007200
0000048
00003841
,
100000
010000
001000
000100
000010
00004872
,
100000
010000
000100
00727200
000010
000001
,
1700000
1710000
001000
000100
000010
000001
,
7230000
010000
001000
00727200
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,38,0,0,0,0,48,41],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,48,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,70,71,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,3,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D8xC3:S3 in GAP, Magma, Sage, TeX

D_8\times C_3\rtimes S_3
% in TeX

G:=Group("D8xC3:S3");
// GroupNames label

G:=SmallGroup(288,767);
// by ID

G=gap.SmallGroup(288,767);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,135,346,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^3=d^3=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<