Copied to
clipboard

G = D8×C3⋊S3order 288 = 25·32

Direct product of D8 and C3⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: D8×C3⋊S3, C245D6, C34(S3×D8), (C3×D4)⋊3D6, (C3×D8)⋊2S3, C325D88C2, C3212(C2×D8), (C3×C24)⋊9C22, C6.118(S3×D4), (C32×D8)⋊5C2, C327D85C2, C3⋊Dic3.48D4, C12⋊S37C22, C12.87(C22×S3), (C3×C12).91C23, (D4×C32)⋊7C22, C324C820C22, C84(C2×C3⋊S3), (C8×C3⋊S3)⋊3C2, (D4×C3⋊S3)⋊3C2, D41(C2×C3⋊S3), C2.15(D4×C3⋊S3), (C2×C3⋊S3).72D4, C4.1(C22×C3⋊S3), (C3×C6).239(C2×D4), (C4×C3⋊S3).70C22, SmallGroup(288,767)

Series: Derived Chief Lower central Upper central

C1C3×C12 — D8×C3⋊S3
C1C3C32C3×C6C3×C12C4×C3⋊S3D4×C3⋊S3 — D8×C3⋊S3
C32C3×C6C3×C12 — D8×C3⋊S3
C1C2C4D8

Generators and relations for D8×C3⋊S3
 G = < a,b,c,d,e | a8=b2=c3=d3=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 1236 in 228 conjugacy classes, 57 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, D8, D8, C2×D4, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C2×D8, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C8, D24, D4⋊S3, C3×D8, S3×D4, C324C8, C3×C24, C4×C3⋊S3, C12⋊S3, C327D4, D4×C32, C22×C3⋊S3, S3×D8, C8×C3⋊S3, C325D8, C327D8, C32×D8, D4×C3⋊S3, D8×C3⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C3⋊S3, C22×S3, C2×D8, C2×C3⋊S3, S3×D4, C22×C3⋊S3, S3×D8, D4×C3⋊S3, D8×C3⋊S3

Smallest permutation representation of D8×C3⋊S3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 23)(18 22)(19 21)(25 29)(26 28)(30 32)(33 35)(36 40)(37 39)(41 47)(42 46)(43 45)(50 56)(51 55)(52 54)(58 64)(59 63)(60 62)(65 69)(66 68)(70 72)
(1 13 20)(2 14 21)(3 15 22)(4 16 23)(5 9 24)(6 10 17)(7 11 18)(8 12 19)(25 51 46)(26 52 47)(27 53 48)(28 54 41)(29 55 42)(30 56 43)(31 49 44)(32 50 45)(33 70 60)(34 71 61)(35 72 62)(36 65 63)(37 66 64)(38 67 57)(39 68 58)(40 69 59)
(1 27 61)(2 28 62)(3 29 63)(4 30 64)(5 31 57)(6 32 58)(7 25 59)(8 26 60)(9 49 38)(10 50 39)(11 51 40)(12 52 33)(13 53 34)(14 54 35)(15 55 36)(16 56 37)(17 45 68)(18 46 69)(19 47 70)(20 48 71)(21 41 72)(22 42 65)(23 43 66)(24 44 67)
(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 65)(56 66)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,47)(42,46)(43,45)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(65,69)(66,68)(70,72), (1,13,20)(2,14,21)(3,15,22)(4,16,23)(5,9,24)(6,10,17)(7,11,18)(8,12,19)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,70,60)(34,71,61)(35,72,62)(36,65,63)(37,66,64)(38,67,57)(39,68,58)(40,69,59), (1,27,61)(2,28,62)(3,29,63)(4,30,64)(5,31,57)(6,32,58)(7,25,59)(8,26,60)(9,49,38)(10,50,39)(11,51,40)(12,52,33)(13,53,34)(14,54,35)(15,55,36)(16,56,37)(17,45,68)(18,46,69)(19,47,70)(20,48,71)(21,41,72)(22,42,65)(23,43,66)(24,44,67), (9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,47)(42,46)(43,45)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(65,69)(66,68)(70,72), (1,13,20)(2,14,21)(3,15,22)(4,16,23)(5,9,24)(6,10,17)(7,11,18)(8,12,19)(25,51,46)(26,52,47)(27,53,48)(28,54,41)(29,55,42)(30,56,43)(31,49,44)(32,50,45)(33,70,60)(34,71,61)(35,72,62)(36,65,63)(37,66,64)(38,67,57)(39,68,58)(40,69,59), (1,27,61)(2,28,62)(3,29,63)(4,30,64)(5,31,57)(6,32,58)(7,25,59)(8,26,60)(9,49,38)(10,50,39)(11,51,40)(12,52,33)(13,53,34)(14,54,35)(15,55,36)(16,56,37)(17,45,68)(18,46,69)(19,47,70)(20,48,71)(21,41,72)(22,42,65)(23,43,66)(24,44,67), (9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,23),(18,22),(19,21),(25,29),(26,28),(30,32),(33,35),(36,40),(37,39),(41,47),(42,46),(43,45),(50,56),(51,55),(52,54),(58,64),(59,63),(60,62),(65,69),(66,68),(70,72)], [(1,13,20),(2,14,21),(3,15,22),(4,16,23),(5,9,24),(6,10,17),(7,11,18),(8,12,19),(25,51,46),(26,52,47),(27,53,48),(28,54,41),(29,55,42),(30,56,43),(31,49,44),(32,50,45),(33,70,60),(34,71,61),(35,72,62),(36,65,63),(37,66,64),(38,67,57),(39,68,58),(40,69,59)], [(1,27,61),(2,28,62),(3,29,63),(4,30,64),(5,31,57),(6,32,58),(7,25,59),(8,26,60),(9,49,38),(10,50,39),(11,51,40),(12,52,33),(13,53,34),(14,54,35),(15,55,36),(16,56,37),(17,45,68),(18,46,69),(19,47,70),(20,48,71),(21,41,72),(22,42,65),(23,43,66),(24,44,67)], [(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,65),(56,66)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A6B6C6D6E···6L8A8B8C8D12A12B12C12D24A···24H
order1222222233334466666···688881212121224···24
size1144993636222221822228···822181844444···4

42 irreducible representations

dim11111122222244
type++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D8S3×D4S3×D8
kernelD8×C3⋊S3C8×C3⋊S3C325D8C327D8C32×D8D4×C3⋊S3C3×D8C3⋊Dic3C2×C3⋊S3C24C3×D4C3⋊S3C6C3
# reps11121241148448

Matrix representation of D8×C3⋊S3 in GL6(𝔽73)

100000
010000
0072000
0007200
0000048
00003841
,
100000
010000
001000
000100
000010
00004872
,
100000
010000
000100
00727200
000010
000001
,
1700000
1710000
001000
000100
000010
000001
,
7230000
010000
001000
00727200
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,38,0,0,0,0,48,41],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,48,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,70,71,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,3,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D8×C3⋊S3 in GAP, Magma, Sage, TeX

D_8\times C_3\rtimes S_3
% in TeX

G:=Group("D8xC3:S3");
// GroupNames label

G:=SmallGroup(288,767);
// by ID

G=gap.SmallGroup(288,767);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,135,346,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^3=d^3=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽