Copied to
clipboard

G = C248D6order 288 = 25·32

8th semidirect product of C24 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C248D6, (C3×D4)⋊4D6, (C3×D8)⋊4S3, D82(C3⋊S3), C242S35C2, C24⋊S35C2, C35(D8⋊S3), C6.119(S3×D4), (C32×D8)⋊7C2, C327D86C2, (C3×C24)⋊12C22, C3⋊Dic3.65D4, C12.D63C2, C329SD165C2, C3219(C8⋊C22), (C3×C12).92C23, C12.88(C22×S3), (D4×C32)⋊8C22, C324Q87C22, C324C810C22, C12⋊S3.16C22, C82(C2×C3⋊S3), D42(C2×C3⋊S3), (D4×C3⋊S3)⋊4C2, C2.16(D4×C3⋊S3), (C2×C3⋊S3).65D4, C4.2(C22×C3⋊S3), (C3×C6).240(C2×D4), (C4×C3⋊S3).23C22, SmallGroup(288,768)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C248D6
C1C3C32C3×C6C3×C12C4×C3⋊S3D4×C3⋊S3 — C248D6
C32C3×C6C3×C12 — C248D6
C1C2C4D8

Generators and relations for C248D6
 G = < a,b,c | a24=b6=c2=1, bab-1=a7, cac=a11, cbc=b-1 >

Subgroups: 972 in 204 conjugacy classes, 55 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, M4(2), D8, D8, SD16, C2×D4, C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C8⋊C22, C3⋊Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D42S3, C324C8, C3×C24, C324Q8, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C327D4, D4×C32, C22×C3⋊S3, D8⋊S3, C24⋊S3, C242S3, C327D8, C329SD16, C32×D8, D4×C3⋊S3, C12.D6, C248D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C22×S3, C8⋊C22, C2×C3⋊S3, S3×D4, C22×C3⋊S3, D8⋊S3, D4×C3⋊S3, C248D6

Smallest permutation representation of C248D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 71 33)(2 54 34 8 72 40)(3 61 35 15 49 47)(4 68 36 22 50 30)(5 51 37)(6 58 38 12 52 44)(7 65 39 19 53 27)(9 55 41)(10 62 42 16 56 48)(11 69 43 23 57 31)(13 59 45)(14 66 46 20 60 28)(17 63 25)(18 70 26 24 64 32)(21 67 29)
(1 45)(2 32)(3 43)(4 30)(5 41)(6 28)(7 39)(8 26)(9 37)(10 48)(11 35)(12 46)(13 33)(14 44)(15 31)(16 42)(17 29)(18 40)(19 27)(20 38)(21 25)(22 36)(23 47)(24 34)(49 57)(50 68)(51 55)(52 66)(54 64)(56 62)(58 60)(59 71)(61 69)(63 67)(70 72)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,71,33)(2,54,34,8,72,40)(3,61,35,15,49,47)(4,68,36,22,50,30)(5,51,37)(6,58,38,12,52,44)(7,65,39,19,53,27)(9,55,41)(10,62,42,16,56,48)(11,69,43,23,57,31)(13,59,45)(14,66,46,20,60,28)(17,63,25)(18,70,26,24,64,32)(21,67,29), (1,45)(2,32)(3,43)(4,30)(5,41)(6,28)(7,39)(8,26)(9,37)(10,48)(11,35)(12,46)(13,33)(14,44)(15,31)(16,42)(17,29)(18,40)(19,27)(20,38)(21,25)(22,36)(23,47)(24,34)(49,57)(50,68)(51,55)(52,66)(54,64)(56,62)(58,60)(59,71)(61,69)(63,67)(70,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,71,33)(2,54,34,8,72,40)(3,61,35,15,49,47)(4,68,36,22,50,30)(5,51,37)(6,58,38,12,52,44)(7,65,39,19,53,27)(9,55,41)(10,62,42,16,56,48)(11,69,43,23,57,31)(13,59,45)(14,66,46,20,60,28)(17,63,25)(18,70,26,24,64,32)(21,67,29), (1,45)(2,32)(3,43)(4,30)(5,41)(6,28)(7,39)(8,26)(9,37)(10,48)(11,35)(12,46)(13,33)(14,44)(15,31)(16,42)(17,29)(18,40)(19,27)(20,38)(21,25)(22,36)(23,47)(24,34)(49,57)(50,68)(51,55)(52,66)(54,64)(56,62)(58,60)(59,71)(61,69)(63,67)(70,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,71,33),(2,54,34,8,72,40),(3,61,35,15,49,47),(4,68,36,22,50,30),(5,51,37),(6,58,38,12,52,44),(7,65,39,19,53,27),(9,55,41),(10,62,42,16,56,48),(11,69,43,23,57,31),(13,59,45),(14,66,46,20,60,28),(17,63,25),(18,70,26,24,64,32),(21,67,29)], [(1,45),(2,32),(3,43),(4,30),(5,41),(6,28),(7,39),(8,26),(9,37),(10,48),(11,35),(12,46),(13,33),(14,44),(15,31),(16,42),(17,29),(18,40),(19,27),(20,38),(21,25),(22,36),(23,47),(24,34),(49,57),(50,68),(51,55),(52,66),(54,64),(56,62),(58,60),(59,71),(61,69),(63,67),(70,72)]])

39 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C6A6B6C6D6E···6L8A8B12A12B12C12D24A···24H
order122222333344466666···6881212121224···24
size1144183622222183622228···843644444···4

39 irreducible representations

dim1111111122222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C8⋊C22S3×D4D8⋊S3
kernelC248D6C24⋊S3C242S3C327D8C329SD16C32×D8D4×C3⋊S3C12.D6C3×D8C3⋊Dic3C2×C3⋊S3C24C3×D4C32C6C3
# reps1111111141148148

Matrix representation of C248D6 in GL6(𝔽73)

110000
7200000
00005162
00001162
0011425162
0031421162
,
110000
7200000
00727200
001000
00727211
0010720
,
0720000
7200000
001100
0007200
00117272
0007201

G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,31,0,0,0,0,42,42,0,0,51,11,51,11,0,0,62,62,62,62],[1,72,0,0,0,0,1,0,0,0,0,0,0,0,72,1,72,1,0,0,72,0,72,0,0,0,0,0,1,72,0,0,0,0,1,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,1,0,0,0,1,72,1,72,0,0,0,0,72,0,0,0,0,0,72,1] >;

C248D6 in GAP, Magma, Sage, TeX

C_{24}\rtimes_8D_6
% in TeX

G:=Group("C24:8D6");
// GroupNames label

G:=SmallGroup(288,768);
// by ID

G=gap.SmallGroup(288,768);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,135,346,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=b^6=c^2=1,b*a*b^-1=a^7,c*a*c=a^11,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽