Extensions 1→N→G→Q→1 with N=C3×SD16 and Q=S3

Direct product G=N×Q with N=C3×SD16 and Q=S3
dρLabelID
C3×S3×SD16484C3xS3xSD16288,684

Semidirect products G=N:Q with N=C3×SD16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×SD16)⋊1S3 = C247D6φ: S3/C3C2 ⊆ Out C3×SD1672(C3xSD16):1S3288,771
(C3×SD16)⋊2S3 = C24.32D6φ: S3/C3C2 ⊆ Out C3×SD16144(C3xSD16):2S3288,772
(C3×SD16)⋊3S3 = SD16×C3⋊S3φ: S3/C3C2 ⊆ Out C3×SD1672(C3xSD16):3S3288,770
(C3×SD16)⋊4S3 = C24.40D6φ: S3/C3C2 ⊆ Out C3×SD16144(C3xSD16):4S3288,773
(C3×SD16)⋊5S3 = C3×Q83D6φ: S3/C3C2 ⊆ Out C3×SD16484(C3xSD16):5S3288,685
(C3×SD16)⋊6S3 = C3×D4.D6φ: S3/C3C2 ⊆ Out C3×SD16484(C3xSD16):6S3288,686
(C3×SD16)⋊7S3 = C3×Q8.7D6φ: trivial image484(C3xSD16):7S3288,687

Non-split extensions G=N.Q with N=C3×SD16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×SD16).1S3 = D72⋊C2φ: S3/C3C2 ⊆ Out C3×SD16724+(C3xSD16).1S3288,124
(C3×SD16).2S3 = SD16⋊D9φ: S3/C3C2 ⊆ Out C3×SD161444-(C3xSD16).2S3288,125
(C3×SD16).3S3 = SD16×D9φ: S3/C3C2 ⊆ Out C3×SD16724(C3xSD16).3S3288,123
(C3×SD16).4S3 = SD163D9φ: S3/C3C2 ⊆ Out C3×SD161444(C3xSD16).4S3288,126

׿
×
𝔽