direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×SD16, C8⋊2C6, D4.C6, C24⋊6C2, Q8⋊2C6, C6.15D4, C12.18C22, C4.2(C2×C6), (C3×Q8)⋊4C2, C2.4(C3×D4), (C3×D4).2C2, SmallGroup(48,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×SD16
G = < a,b,c | a3=b8=c2=1, ab=ba, ac=ca, cbc=b3 >
Character table of C3×SD16
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ9 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ10 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ11 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ12 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ13 | 2 | 2 | 0 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3 | ζ87ζ32+ζ85ζ32 | ζ83ζ3+ζ8ζ3 | ζ83ζ32+ζ8ζ32 | complex faithful |
ρ19 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ8ζ3 | ζ83ζ32+ζ8ζ32 | ζ87ζ3+ζ85ζ3 | ζ87ζ32+ζ85ζ32 | complex faithful |
ρ20 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ85ζ32 | ζ87ζ3+ζ85ζ3 | ζ83ζ32+ζ8ζ32 | ζ83ζ3+ζ8ζ3 | complex faithful |
ρ21 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32 | ζ83ζ3+ζ8ζ3 | ζ87ζ32+ζ85ζ32 | ζ87ζ3+ζ85ζ3 | complex faithful |
(1 10 23)(2 11 24)(3 12 17)(4 13 18)(5 14 19)(6 15 20)(7 16 21)(8 9 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 21)(18 24)(20 22)
G:=sub<Sym(24)| (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,21)(18,24)(20,22)>;
G:=Group( (1,10,23)(2,11,24)(3,12,17)(4,13,18)(5,14,19)(6,15,20)(7,16,21)(8,9,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,21)(18,24)(20,22) );
G=PermutationGroup([[(1,10,23),(2,11,24),(3,12,17),(4,13,18),(5,14,19),(6,15,20),(7,16,21),(8,9,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,21),(18,24),(20,22)]])
G:=TransitiveGroup(24,41);
C3×SD16 is a maximal subgroup of
Q8⋊3D6 D4.D6 Q8.7D6 SD16.A4 C56⋊C6 D4.F7 Q8⋊2F7
C3×SD16 is a maximal quotient of C56⋊C6 D4.F7 Q8⋊2F7
Matrix representation of C3×SD16 ►in GL2(𝔽19) generated by
11 | 0 |
0 | 11 |
0 | 7 |
11 | 6 |
18 | 15 |
0 | 1 |
G:=sub<GL(2,GF(19))| [11,0,0,11],[0,11,7,6],[18,0,15,1] >;
C3×SD16 in GAP, Magma, Sage, TeX
C_3\times {\rm SD}_{16}
% in TeX
G:=Group("C3xSD16");
// GroupNames label
G:=SmallGroup(48,26);
// by ID
G=gap.SmallGroup(48,26);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-2,120,141,723,368,58]);
// Polycyclic
G:=Group<a,b,c|a^3=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export
Subgroup lattice of C3×SD16 in TeX
Character table of C3×SD16 in TeX