metabelian, supersoluble, monomial
Aliases: C24⋊7D6, (C3×Q8)⋊8D6, C24⋊S3⋊3C2, C3⋊5(Q8⋊3D6), (C3×SD16)⋊1S3, (C3×D4).17D6, C6.122(S3×D4), C32⋊5D8⋊10C2, C32⋊7D8⋊7C2, SD16⋊1(C3⋊S3), (C3×C24)⋊11C22, C3⋊Dic3.66D4, C12⋊S3⋊8C22, C32⋊11SD16⋊6C2, C12.26D6⋊3C2, C32⋊21(C8⋊C22), (C3×C12).95C23, C12.91(C22×S3), (C32×SD16)⋊3C2, (Q8×C32)⋊8C22, C32⋊4C8⋊11C22, (D4×C32).18C22, C8⋊3(C2×C3⋊S3), (D4×C3⋊S3)⋊5C2, Q8⋊3(C2×C3⋊S3), D4.3(C2×C3⋊S3), C2.19(D4×C3⋊S3), (C2×C3⋊S3).66D4, C4.5(C22×C3⋊S3), (C3×C6).243(C2×D4), (C4×C3⋊S3).24C22, SmallGroup(288,771)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C3×C12 — C4×C3⋊S3 — D4×C3⋊S3 — C24⋊7D6 |
Generators and relations for C24⋊7D6
G = < a,b,c | a24=b6=c2=1, bab-1=a19, cac=a-1, cbc=b-1 >
Subgroups: 1036 in 204 conjugacy classes, 55 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, M4(2), D8, SD16, SD16, C2×D4, C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C8⋊C22, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C8⋊S3, D24, D4⋊S3, Q8⋊2S3, C3×SD16, S3×D4, Q8⋊3S3, C32⋊4C8, C3×C24, C4×C3⋊S3, C4×C3⋊S3, C12⋊S3, C12⋊S3, C32⋊7D4, D4×C32, Q8×C32, C22×C3⋊S3, Q8⋊3D6, C24⋊S3, C32⋊5D8, C32⋊7D8, C32⋊11SD16, C32×SD16, D4×C3⋊S3, C12.26D6, C24⋊7D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C22×S3, C8⋊C22, C2×C3⋊S3, S3×D4, C22×C3⋊S3, Q8⋊3D6, D4×C3⋊S3, C24⋊7D6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 50 37)(2 69 38 20 51 32)(3 64 39 15 52 27)(4 59 40 10 53 46)(5 54 41)(6 49 42 24 55 36)(7 68 43 19 56 31)(8 63 44 14 57 26)(9 58 45)(11 72 47 23 60 35)(12 67 48 18 61 30)(13 62 25)(16 71 28 22 65 34)(17 66 29)(21 70 33)
(1 25)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(24 26)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(64 72)(65 71)(66 70)(67 69)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,50,37)(2,69,38,20,51,32)(3,64,39,15,52,27)(4,59,40,10,53,46)(5,54,41)(6,49,42,24,55,36)(7,68,43,19,56,31)(8,63,44,14,57,26)(9,58,45)(11,72,47,23,60,35)(12,67,48,18,61,30)(13,62,25)(16,71,28,22,65,34)(17,66,29)(21,70,33), (1,25)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,50,37)(2,69,38,20,51,32)(3,64,39,15,52,27)(4,59,40,10,53,46)(5,54,41)(6,49,42,24,55,36)(7,68,43,19,56,31)(8,63,44,14,57,26)(9,58,45)(11,72,47,23,60,35)(12,67,48,18,61,30)(13,62,25)(16,71,28,22,65,34)(17,66,29)(21,70,33), (1,25)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,50,37),(2,69,38,20,51,32),(3,64,39,15,52,27),(4,59,40,10,53,46),(5,54,41),(6,49,42,24,55,36),(7,68,43,19,56,31),(8,63,44,14,57,26),(9,58,45),(11,72,47,23,60,35),(12,67,48,18,61,30),(13,62,25),(16,71,28,22,65,34),(17,66,29),(21,70,33)], [(1,25),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(24,26),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(64,72),(65,71),(66,70),(67,69)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 4 | 18 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 4 | 18 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 4 | 36 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D6 | C8⋊C22 | S3×D4 | Q8⋊3D6 |
kernel | C24⋊7D6 | C24⋊S3 | C32⋊5D8 | C32⋊7D8 | C32⋊11SD16 | C32×SD16 | D4×C3⋊S3 | C12.26D6 | C3×SD16 | C3⋊Dic3 | C2×C3⋊S3 | C24 | C3×D4 | C3×Q8 | C32 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 4 | 4 | 4 | 1 | 4 | 8 |
Matrix representation of C24⋊7D6 ►in GL8(ℤ)
-1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,Integers())| [-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C24⋊7D6 in GAP, Magma, Sage, TeX
C_{24}\rtimes_7D_6
% in TeX
G:=Group("C24:7D6");
// GroupNames label
G:=SmallGroup(288,771);
// by ID
G=gap.SmallGroup(288,771);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,135,100,346,185,80,2693,9414]);
// Polycyclic
G:=Group<a,b,c|a^24=b^6=c^2=1,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations