# Extensions 1→N→G→Q→1 with N=C4 and Q=C3×D12

Direct product G=N×Q with N=C4 and Q=C3×D12
dρLabelID
C12×D1296C12xD12288,644

Semidirect products G=N:Q with N=C4 and Q=C3×D12
extensionφ:Q→Aut NdρLabelID
C41(C3×D12) = C3×C4⋊D12φ: C3×D12/C3×C12C2 ⊆ Aut C496C4:1(C3xD12)288,645
C42(C3×D12) = C3×C12⋊D4φ: C3×D12/S3×C6C2 ⊆ Aut C496C4:2(C3xD12)288,666

Non-split extensions G=N.Q with N=C4 and Q=C3×D12
extensionφ:Q→Aut NdρLabelID
C4.1(C3×D12) = C3×D48φ: C3×D12/C3×C12C2 ⊆ Aut C4962C4.1(C3xD12)288,233
C4.2(C3×D12) = C3×C48⋊C2φ: C3×D12/C3×C12C2 ⊆ Aut C4962C4.2(C3xD12)288,234
C4.3(C3×D12) = C3×Dic24φ: C3×D12/C3×C12C2 ⊆ Aut C4962C4.3(C3xD12)288,235
C4.4(C3×D12) = C3×C122Q8φ: C3×D12/C3×C12C2 ⊆ Aut C496C4.4(C3xD12)288,640
C4.5(C3×D12) = C3×C427S3φ: C3×D12/C3×C12C2 ⊆ Aut C496C4.5(C3xD12)288,646
C4.6(C3×D12) = C6×C24⋊C2φ: C3×D12/C3×C12C2 ⊆ Aut C496C4.6(C3xD12)288,673
C4.7(C3×D12) = C6×D24φ: C3×D12/C3×C12C2 ⊆ Aut C496C4.7(C3xD12)288,674
C4.8(C3×D12) = C6×Dic12φ: C3×D12/C3×C12C2 ⊆ Aut C496C4.8(C3xD12)288,676
C4.9(C3×D12) = C3×C6.D8φ: C3×D12/S3×C6C2 ⊆ Aut C496C4.9(C3xD12)288,243
C4.10(C3×D12) = C3×C6.SD16φ: C3×D12/S3×C6C2 ⊆ Aut C496C4.10(C3xD12)288,244
C4.11(C3×D12) = C3×C12.46D4φ: C3×D12/S3×C6C2 ⊆ Aut C4484C4.11(C3xD12)288,257
C4.12(C3×D12) = C3×C12.47D4φ: C3×D12/S3×C6C2 ⊆ Aut C4484C4.12(C3xD12)288,258
C4.13(C3×D12) = C3×C4.D12φ: C3×D12/S3×C6C2 ⊆ Aut C496C4.13(C3xD12)288,668
C4.14(C3×D12) = C3×C8⋊D6φ: C3×D12/S3×C6C2 ⊆ Aut C4484C4.14(C3xD12)288,679
C4.15(C3×D12) = C3×C8.D6φ: C3×D12/S3×C6C2 ⊆ Aut C4484C4.15(C3xD12)288,680
C4.16(C3×D12) = C3×C12⋊C8central extension (φ=1)96C4.16(C3xD12)288,238
C4.17(C3×D12) = C3×C424S3central extension (φ=1)242C4.17(C3xD12)288,239
C4.18(C3×D12) = C3×C24.C4central extension (φ=1)482C4.18(C3xD12)288,253
C4.19(C3×D12) = C3×D6⋊C8central extension (φ=1)96C4.19(C3xD12)288,254
C4.20(C3×D12) = C3×C4○D24central extension (φ=1)482C4.20(C3xD12)288,675

׿
×
𝔽