Extensions 1→N→G→Q→1 with N=C4 and Q=C3xD12

Direct product G=NxQ with N=C4 and Q=C3xD12
dρLabelID
C12xD1296C12xD12288,644

Semidirect products G=N:Q with N=C4 and Q=C3xD12
extensionφ:Q→Aut NdρLabelID
C4:1(C3xD12) = C3xC4:D12φ: C3xD12/C3xC12C2 ⊆ Aut C496C4:1(C3xD12)288,645
C4:2(C3xD12) = C3xC12:D4φ: C3xD12/S3xC6C2 ⊆ Aut C496C4:2(C3xD12)288,666

Non-split extensions G=N.Q with N=C4 and Q=C3xD12
extensionφ:Q→Aut NdρLabelID
C4.1(C3xD12) = C3xD48φ: C3xD12/C3xC12C2 ⊆ Aut C4962C4.1(C3xD12)288,233
C4.2(C3xD12) = C3xC48:C2φ: C3xD12/C3xC12C2 ⊆ Aut C4962C4.2(C3xD12)288,234
C4.3(C3xD12) = C3xDic24φ: C3xD12/C3xC12C2 ⊆ Aut C4962C4.3(C3xD12)288,235
C4.4(C3xD12) = C3xC12:2Q8φ: C3xD12/C3xC12C2 ⊆ Aut C496C4.4(C3xD12)288,640
C4.5(C3xD12) = C3xC42:7S3φ: C3xD12/C3xC12C2 ⊆ Aut C496C4.5(C3xD12)288,646
C4.6(C3xD12) = C6xC24:C2φ: C3xD12/C3xC12C2 ⊆ Aut C496C4.6(C3xD12)288,673
C4.7(C3xD12) = C6xD24φ: C3xD12/C3xC12C2 ⊆ Aut C496C4.7(C3xD12)288,674
C4.8(C3xD12) = C6xDic12φ: C3xD12/C3xC12C2 ⊆ Aut C496C4.8(C3xD12)288,676
C4.9(C3xD12) = C3xC6.D8φ: C3xD12/S3xC6C2 ⊆ Aut C496C4.9(C3xD12)288,243
C4.10(C3xD12) = C3xC6.SD16φ: C3xD12/S3xC6C2 ⊆ Aut C496C4.10(C3xD12)288,244
C4.11(C3xD12) = C3xC12.46D4φ: C3xD12/S3xC6C2 ⊆ Aut C4484C4.11(C3xD12)288,257
C4.12(C3xD12) = C3xC12.47D4φ: C3xD12/S3xC6C2 ⊆ Aut C4484C4.12(C3xD12)288,258
C4.13(C3xD12) = C3xC4.D12φ: C3xD12/S3xC6C2 ⊆ Aut C496C4.13(C3xD12)288,668
C4.14(C3xD12) = C3xC8:D6φ: C3xD12/S3xC6C2 ⊆ Aut C4484C4.14(C3xD12)288,679
C4.15(C3xD12) = C3xC8.D6φ: C3xD12/S3xC6C2 ⊆ Aut C4484C4.15(C3xD12)288,680
C4.16(C3xD12) = C3xC12:C8central extension (φ=1)96C4.16(C3xD12)288,238
C4.17(C3xD12) = C3xC42:4S3central extension (φ=1)242C4.17(C3xD12)288,239
C4.18(C3xD12) = C3xC24.C4central extension (φ=1)482C4.18(C3xD12)288,253
C4.19(C3xD12) = C3xD6:C8central extension (φ=1)96C4.19(C3xD12)288,254
C4.20(C3xD12) = C3xC4oD24central extension (φ=1)482C4.20(C3xD12)288,675

׿
x
:
Z
F
o
wr
Q
<