direct product, metabelian, supersoluble, monomial
Aliases: C3×C8⋊D6, D24⋊2C6, C24⋊11D6, C12.89D12, C62.63D4, C8⋊1(S3×C6), C24⋊1(C2×C6), C24⋊C2⋊1C6, C4○D12⋊2C6, (C3×D24)⋊3C2, (C6×D12)⋊9C2, D12⋊4(C2×C6), (C2×D12)⋊7C6, C6.13(C6×D4), (C3×C24)⋊3C22, Dic6⋊4(C2×C6), (C2×C6).47D12, C2.15(C6×D12), C4.14(C3×D12), (C3×C12).82D4, C12.12(C3×D4), (C2×C12).238D6, C6.101(C2×D12), M4(2)⋊1(C3×S3), (C3×M4(2))⋊3S3, (C3×M4(2))⋊1C6, C22.5(C3×D12), (C3×D12)⋊39C22, C32⋊16(C8⋊C22), C12.32(C22×C6), (C6×C12).115C22, C12.219(C22×S3), (C3×C12).164C23, (C3×Dic6)⋊37C22, (C32×M4(2))⋊1C2, C4.30(S3×C2×C6), C3⋊1(C3×C8⋊C22), (C2×C6).6(C3×D4), (C3×C24⋊C2)⋊3C2, (C3×C4○D12)⋊6C2, (C2×C4).13(S3×C6), (C2×C12).26(C2×C6), (C3×C6).183(C2×D4), SmallGroup(288,679)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C8⋊D6
G = < a,b,c,d | a3=b8=c6=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >
Subgroups: 442 in 146 conjugacy classes, 58 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3×C6, C3×C6, C24, C24, Dic6, C4×S3, D12, D12, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C8⋊C22, C3×Dic3, C3×C12, S3×C6, C62, C24⋊C2, D24, C3×M4(2), C3×M4(2), C3×D8, C3×SD16, C2×D12, C4○D12, C6×D4, C3×C4○D4, C3×C24, C3×Dic6, S3×C12, C3×D12, C3×D12, C3×D12, C3×C3⋊D4, C6×C12, S3×C2×C6, C8⋊D6, C3×C8⋊C22, C3×C24⋊C2, C3×D24, C32×M4(2), C6×D12, C3×C4○D12, C3×C8⋊D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, D12, C3×D4, C22×S3, C22×C6, C8⋊C22, S3×C6, C2×D12, C6×D4, C3×D12, S3×C2×C6, C8⋊D6, C3×C8⋊C22, C6×D12, C3×C8⋊D6
(1 36 29)(2 37 30)(3 38 31)(4 39 32)(5 40 25)(6 33 26)(7 34 27)(8 35 28)(9 46 19)(10 47 20)(11 48 21)(12 41 22)(13 42 23)(14 43 24)(15 44 17)(16 45 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 29 36)(2 26 37 6 30 33)(3 31 38)(4 28 39 8 32 35)(5 25 40)(7 27 34)(9 46 19)(10 43 20 14 47 24)(11 48 21)(12 45 22 16 41 18)(13 42 23)(15 44 17)
(1 19)(2 18)(3 17)(4 24)(5 23)(6 22)(7 21)(8 20)(9 36)(10 35)(11 34)(12 33)(13 40)(14 39)(15 38)(16 37)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
G:=sub<Sym(48)| (1,36,29)(2,37,30)(3,38,31)(4,39,32)(5,40,25)(6,33,26)(7,34,27)(8,35,28)(9,46,19)(10,47,20)(11,48,21)(12,41,22)(13,42,23)(14,43,24)(15,44,17)(16,45,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,29,36)(2,26,37,6,30,33)(3,31,38)(4,28,39,8,32,35)(5,25,40)(7,27,34)(9,46,19)(10,43,20,14,47,24)(11,48,21)(12,45,22,16,41,18)(13,42,23)(15,44,17), (1,19)(2,18)(3,17)(4,24)(5,23)(6,22)(7,21)(8,20)(9,36)(10,35)(11,34)(12,33)(13,40)(14,39)(15,38)(16,37)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)>;
G:=Group( (1,36,29)(2,37,30)(3,38,31)(4,39,32)(5,40,25)(6,33,26)(7,34,27)(8,35,28)(9,46,19)(10,47,20)(11,48,21)(12,41,22)(13,42,23)(14,43,24)(15,44,17)(16,45,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,29,36)(2,26,37,6,30,33)(3,31,38)(4,28,39,8,32,35)(5,25,40)(7,27,34)(9,46,19)(10,43,20,14,47,24)(11,48,21)(12,45,22,16,41,18)(13,42,23)(15,44,17), (1,19)(2,18)(3,17)(4,24)(5,23)(6,22)(7,21)(8,20)(9,36)(10,35)(11,34)(12,33)(13,40)(14,39)(15,38)(16,37)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43) );
G=PermutationGroup([[(1,36,29),(2,37,30),(3,38,31),(4,39,32),(5,40,25),(6,33,26),(7,34,27),(8,35,28),(9,46,19),(10,47,20),(11,48,21),(12,41,22),(13,42,23),(14,43,24),(15,44,17),(16,45,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,29,36),(2,26,37,6,30,33),(3,31,38),(4,28,39,8,32,35),(5,25,40),(7,27,34),(9,46,19),(10,43,20,14,47,24),(11,48,21),(12,45,22,16,41,18),(13,42,23),(15,44,17)], [(1,19),(2,18),(3,17),(4,24),(5,23),(6,22),(7,21),(8,20),(9,36),(10,35),(11,34),(12,33),(13,40),(14,39),(15,38),(16,37),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6G | 6H | 6I | 6J | 6K | ··· | 6P | 8A | 8B | 12A | ··· | 12J | 12K | 12L | 12M | 12N | 12O | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 12 | 12 | 12 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | ··· | 4 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | D4 | D4 | D6 | D6 | C3×S3 | D12 | C3×D4 | D12 | C3×D4 | S3×C6 | S3×C6 | C3×D12 | C3×D12 | C8⋊C22 | C8⋊D6 | C3×C8⋊C22 | C3×C8⋊D6 |
kernel | C3×C8⋊D6 | C3×C24⋊C2 | C3×D24 | C32×M4(2) | C6×D12 | C3×C4○D12 | C8⋊D6 | C24⋊C2 | D24 | C3×M4(2) | C2×D12 | C4○D12 | C3×M4(2) | C3×C12 | C62 | C24 | C2×C12 | M4(2) | C12 | C12 | C2×C6 | C2×C6 | C8 | C2×C4 | C4 | C22 | C32 | C3 | C3 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 1 | 2 | 2 | 4 |
Matrix representation of C3×C8⋊D6 ►in GL4(𝔽73) generated by
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 8 |
0 | 1 | 0 | 0 |
27 | 0 | 0 | 0 |
0 | 0 | 0 | 27 |
0 | 0 | 72 | 0 |
64 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 65 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 65 |
64 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[0,27,0,0,1,0,0,0,0,0,0,72,0,0,27,0],[64,0,0,0,0,9,0,0,0,0,8,0,0,0,0,65],[0,0,64,0,0,0,0,9,8,0,0,0,0,65,0,0] >;
C3×C8⋊D6 in GAP, Magma, Sage, TeX
C_3\times C_8\rtimes D_6
% in TeX
G:=Group("C3xC8:D6");
// GroupNames label
G:=SmallGroup(288,679);
// by ID
G=gap.SmallGroup(288,679);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,590,555,142,2524,102,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^8=c^6=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations