direct product, metabelian, supersoluble, monomial
Aliases: C3×C8.D6, C24.41D6, Dic12⋊2C6, C12.90D12, C62.64D4, C8.1(S3×C6), C24⋊C2⋊2C6, C24.1(C2×C6), C6.14(C6×D4), (C2×Dic6)⋊8C6, C4○D12.4C6, D12.8(C2×C6), (C3×C12).83D4, C12.13(C3×D4), (C2×C6).48D12, C4.15(C3×D12), C2.16(C6×D12), (C3×Dic12)⋊3C2, (C6×Dic6)⋊13C2, C6.102(C2×D12), (C2×C12).239D6, (C3×M4(2))⋊4S3, M4(2)⋊2(C3×S3), (C3×M4(2))⋊2C6, (C3×C24).3C22, Dic6.8(C2×C6), C22.6(C3×D12), C12.33(C22×C6), C12.220(C22×S3), (C6×C12).116C22, (C3×C12).165C23, (C3×D12).47C22, C32⋊16(C8.C22), (C32×M4(2))⋊2C2, (C3×Dic6).48C22, C4.31(S3×C2×C6), (C2×C6).7(C3×D4), (C3×C24⋊C2)⋊4C2, (C2×C4).14(S3×C6), C3⋊1(C3×C8.C22), (C2×C12).27(C2×C6), (C3×C6).184(C2×D4), (C3×C4○D12).10C2, SmallGroup(288,680)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C8.D6
G = < a,b,c,d | a3=b8=1, c6=d2=b4, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b-1, dcd-1=c5 >
Subgroups: 314 in 130 conjugacy classes, 58 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×S3, C3×C6, C3×C6, C24, C24, Dic6, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C8.C22, C3×Dic3, C3×C12, S3×C6, C62, C24⋊C2, Dic12, C3×M4(2), C3×M4(2), C3×SD16, C3×Q16, C2×Dic6, C4○D12, C6×Q8, C3×C4○D4, C3×C24, C3×Dic6, C3×Dic6, C3×Dic6, S3×C12, C3×D12, C6×Dic3, C3×C3⋊D4, C6×C12, C8.D6, C3×C8.C22, C3×C24⋊C2, C3×Dic12, C32×M4(2), C6×Dic6, C3×C4○D12, C3×C8.D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, D12, C3×D4, C22×S3, C22×C6, C8.C22, S3×C6, C2×D12, C6×D4, C3×D12, S3×C2×C6, C8.D6, C3×C8.C22, C6×D12, C3×C8.D6
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 13 4 22 7 19 10 16)(2 20 5 17 8 14 11 23)(3 15 6 24 9 21 12 18)(25 37 34 40 31 43 28 46)(26 44 35 47 32 38 29 41)(27 39 36 42 33 45 30 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 7 27)(2 26 8 32)(3 31 9 25)(4 36 10 30)(5 29 11 35)(6 34 12 28)(13 42 19 48)(14 47 20 41)(15 40 21 46)(16 45 22 39)(17 38 23 44)(18 43 24 37)
G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,4,22,7,19,10,16)(2,20,5,17,8,14,11,23)(3,15,6,24,9,21,12,18)(25,37,34,40,31,43,28,46)(26,44,35,47,32,38,29,41)(27,39,36,42,33,45,30,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,4,22,7,19,10,16)(2,20,5,17,8,14,11,23)(3,15,6,24,9,21,12,18)(25,37,34,40,31,43,28,46)(26,44,35,47,32,38,29,41)(27,39,36,42,33,45,30,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,13,4,22,7,19,10,16),(2,20,5,17,8,14,11,23),(3,15,6,24,9,21,12,18),(25,37,34,40,31,43,28,46),(26,44,35,47,32,38,29,41),(27,39,36,42,33,45,30,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,7,27),(2,26,8,32),(3,31,9,25),(4,36,10,30),(5,29,11,35),(6,34,12,28),(13,42,19,48),(14,47,20,41),(15,40,21,46),(16,45,22,39),(17,38,23,44),(18,43,24,37)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | ··· | 6G | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 12A | ··· | 12J | 12K | 12L | 12M | 12N | ··· | 12S | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 12 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | D4 | D4 | D6 | D6 | C3×S3 | D12 | C3×D4 | D12 | C3×D4 | S3×C6 | S3×C6 | C3×D12 | C3×D12 | C8.C22 | C8.D6 | C3×C8.C22 | C3×C8.D6 |
kernel | C3×C8.D6 | C3×C24⋊C2 | C3×Dic12 | C32×M4(2) | C6×Dic6 | C3×C4○D12 | C8.D6 | C24⋊C2 | Dic12 | C3×M4(2) | C2×Dic6 | C4○D12 | C3×M4(2) | C3×C12 | C62 | C24 | C2×C12 | M4(2) | C12 | C12 | C2×C6 | C2×C6 | C8 | C2×C4 | C4 | C22 | C32 | C3 | C3 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 1 | 2 | 2 | 4 |
Matrix representation of C3×C8.D6 ►in GL4(𝔽73) generated by
64 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
0 | 1 | 0 | 0 |
46 | 0 | 0 | 0 |
0 | 28 | 0 | 46 |
26 | 69 | 72 | 0 |
70 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
56 | 19 | 49 | 0 |
54 | 56 | 0 | 24 |
10 | 29 | 51 | 0 |
44 | 10 | 0 | 22 |
46 | 33 | 63 | 29 |
33 | 27 | 44 | 63 |
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[0,46,0,26,1,0,28,69,0,0,0,72,0,0,46,0],[70,0,56,54,0,3,19,56,0,0,49,0,0,0,0,24],[10,44,46,33,29,10,33,27,51,0,63,44,0,22,29,63] >;
C3×C8.D6 in GAP, Magma, Sage, TeX
C_3\times C_8.D_6
% in TeX
G:=Group("C3xC8.D6");
// GroupNames label
G:=SmallGroup(288,680);
// by ID
G=gap.SmallGroup(288,680);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,555,142,2524,102,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^8=1,c^6=d^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations