Extensions 1→N→G→Q→1 with N=C6 and Q=C3×Q16

Direct product G=N×Q with N=C6 and Q=C3×Q16

Semidirect products G=N:Q with N=C6 and Q=C3×Q16
extensionφ:Q→Aut NdρLabelID
C61(C3×Q16) = C6×Dic12φ: C3×Q16/C24C2 ⊆ Aut C696C6:1(C3xQ16)288,676
C62(C3×Q16) = C6×C3⋊Q16φ: C3×Q16/C3×Q8C2 ⊆ Aut C696C6:2(C3xQ16)288,714

Non-split extensions G=N.Q with N=C6 and Q=C3×Q16
extensionφ:Q→Aut NdρLabelID
C6.1(C3×Q16) = C3×C2.Dic12φ: C3×Q16/C24C2 ⊆ Aut C696C6.1(C3xQ16)288,250
C6.2(C3×Q16) = C3×C241C4φ: C3×Q16/C24C2 ⊆ Aut C696C6.2(C3xQ16)288,252
C6.3(C3×Q16) = C3×C6.Q16φ: C3×Q16/C3×Q8C2 ⊆ Aut C696C6.3(C3xQ16)288,241
C6.4(C3×Q16) = C3×C6.SD16φ: C3×Q16/C3×Q8C2 ⊆ Aut C696C6.4(C3xQ16)288,244
C6.5(C3×Q16) = C3×Q82Dic3φ: C3×Q16/C3×Q8C2 ⊆ Aut C696C6.5(C3xQ16)288,269
C6.6(C3×Q16) = C9×Q8⋊C4central extension (φ=1)288C6.6(C3xQ16)288,53
C6.7(C3×Q16) = C9×C2.D8central extension (φ=1)288C6.7(C3xQ16)288,57
C6.8(C3×Q16) = Q16×C18central extension (φ=1)288C6.8(C3xQ16)288,184
C6.9(C3×Q16) = C32×Q8⋊C4central extension (φ=1)288C6.9(C3xQ16)288,321
C6.10(C3×Q16) = C32×C2.D8central extension (φ=1)288C6.10(C3xQ16)288,325