Extensions 1→N→G→Q→1 with N=C24 and Q=Dic3

Direct product G=N×Q with N=C24 and Q=Dic3
dρLabelID
Dic3×C2496Dic3xC24288,247

Semidirect products G=N:Q with N=C24 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C241Dic3 = C241Dic3φ: Dic3/C6C2 ⊆ Aut C24288C24:1Dic3288,293
C242Dic3 = C242Dic3φ: Dic3/C6C2 ⊆ Aut C24288C24:2Dic3288,292
C243Dic3 = C3×C241C4φ: Dic3/C6C2 ⊆ Aut C2496C24:3Dic3288,252
C244Dic3 = C8×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C24288C24:4Dic3288,288
C245Dic3 = C24⋊Dic3φ: Dic3/C6C2 ⊆ Aut C24288C24:5Dic3288,290
C246Dic3 = C3×C8⋊Dic3φ: Dic3/C6C2 ⊆ Aut C2496C24:6Dic3288,251
C247Dic3 = C3×C24⋊C4φ: Dic3/C6C2 ⊆ Aut C2496C24:7Dic3288,249

Non-split extensions G=N.Q with N=C24 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C24.1Dic3 = C72.C4φ: Dic3/C6C2 ⊆ Aut C241442C24.1Dic3288,20
C24.2Dic3 = C721C4φ: Dic3/C6C2 ⊆ Aut C24288C24.2Dic3288,26
C24.3Dic3 = C12.59D12φ: Dic3/C6C2 ⊆ Aut C24144C24.3Dic3288,294
C24.4Dic3 = C8⋊Dic9φ: Dic3/C6C2 ⊆ Aut C24288C24.4Dic3288,25
C24.5Dic3 = C9⋊C32φ: Dic3/C6C2 ⊆ Aut C242882C24.5Dic3288,1
C24.6Dic3 = C2×C9⋊C16φ: Dic3/C6C2 ⊆ Aut C24288C24.6Dic3288,18
C24.7Dic3 = C36.C8φ: Dic3/C6C2 ⊆ Aut C241442C24.7Dic3288,19
C24.8Dic3 = C8×Dic9φ: Dic3/C6C2 ⊆ Aut C24288C24.8Dic3288,21
C24.9Dic3 = C72⋊C4φ: Dic3/C6C2 ⊆ Aut C24288C24.9Dic3288,23
C24.10Dic3 = C48.S3φ: Dic3/C6C2 ⊆ Aut C24288C24.10Dic3288,65
C24.11Dic3 = C2×C24.S3φ: Dic3/C6C2 ⊆ Aut C24288C24.11Dic3288,286
C24.12Dic3 = C24.94D6φ: Dic3/C6C2 ⊆ Aut C24144C24.12Dic3288,287
C24.13Dic3 = C3×C24.C4φ: Dic3/C6C2 ⊆ Aut C24482C24.13Dic3288,253
C24.14Dic3 = C3×C12.C8φ: Dic3/C6C2 ⊆ Aut C24482C24.14Dic3288,246
C24.15Dic3 = C3×C3⋊C32central extension (φ=1)962C24.15Dic3288,64
C24.16Dic3 = C6×C3⋊C16central extension (φ=1)96C24.16Dic3288,245

׿
×
𝔽