extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.1Dic3 = C72.C4 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 144 | 2 | C24.1Dic3 | 288,20 |
C24.2Dic3 = C72⋊1C4 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.2Dic3 | 288,26 |
C24.3Dic3 = C12.59D12 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 144 | | C24.3Dic3 | 288,294 |
C24.4Dic3 = C8⋊Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.4Dic3 | 288,25 |
C24.5Dic3 = C9⋊C32 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | 2 | C24.5Dic3 | 288,1 |
C24.6Dic3 = C2×C9⋊C16 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.6Dic3 | 288,18 |
C24.7Dic3 = C36.C8 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 144 | 2 | C24.7Dic3 | 288,19 |
C24.8Dic3 = C8×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.8Dic3 | 288,21 |
C24.9Dic3 = C72⋊C4 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.9Dic3 | 288,23 |
C24.10Dic3 = C48.S3 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.10Dic3 | 288,65 |
C24.11Dic3 = C2×C24.S3 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 288 | | C24.11Dic3 | 288,286 |
C24.12Dic3 = C24.94D6 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 144 | | C24.12Dic3 | 288,287 |
C24.13Dic3 = C3×C24.C4 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 48 | 2 | C24.13Dic3 | 288,253 |
C24.14Dic3 = C3×C12.C8 | φ: Dic3/C6 → C2 ⊆ Aut C24 | 48 | 2 | C24.14Dic3 | 288,246 |
C24.15Dic3 = C3×C3⋊C32 | central extension (φ=1) | 96 | 2 | C24.15Dic3 | 288,64 |
C24.16Dic3 = C6×C3⋊C16 | central extension (φ=1) | 96 | | C24.16Dic3 | 288,245 |