Extensions 1→N→G→Q→1 with N=C4 and Q=C12⋊S3

Direct product G=N×Q with N=C4 and Q=C12⋊S3
dρLabelID
C4×C12⋊S3144C4xC12:S3288,730

Semidirect products G=N:Q with N=C4 and Q=C12⋊S3
extensionφ:Q→Aut NdρLabelID
C41(C12⋊S3) = C124D12φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4:1(C12:S3)288,731
C42(C12⋊S3) = C123D12φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4144C4:2(C12:S3)288,752

Non-split extensions G=N.Q with N=C4 and Q=C12⋊S3
extensionφ:Q→Aut NdρLabelID
C4.1(C12⋊S3) = C325D16φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4.1(C12:S3)288,274
C4.2(C12⋊S3) = C6.D24φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4.2(C12:S3)288,275
C4.3(C12⋊S3) = C325Q32φ: C12⋊S3/C3×C12C2 ⊆ Aut C4288C4.3(C12:S3)288,276
C4.4(C12⋊S3) = C126Dic6φ: C12⋊S3/C3×C12C2 ⊆ Aut C4288C4.4(C12:S3)288,726
C4.5(C12⋊S3) = C1226C2φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4.5(C12:S3)288,732
C4.6(C12⋊S3) = C2×C242S3φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4.6(C12:S3)288,759
C4.7(C12⋊S3) = C2×C325D8φ: C12⋊S3/C3×C12C2 ⊆ Aut C4144C4.7(C12:S3)288,760
C4.8(C12⋊S3) = C2×C325Q16φ: C12⋊S3/C3×C12C2 ⊆ Aut C4288C4.8(C12:S3)288,762
C4.9(C12⋊S3) = C62.113D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4144C4.9(C12:S3)288,284
C4.10(C12⋊S3) = C62.114D4φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4288C4.10(C12:S3)288,285
C4.11(C12⋊S3) = C12.19D12φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C472C4.11(C12:S3)288,298
C4.12(C12⋊S3) = C12.20D12φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4144C4.12(C12:S3)288,299
C4.13(C12⋊S3) = C12.31D12φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4144C4.13(C12:S3)288,754
C4.14(C12⋊S3) = C243D6φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C472C4.14(C12:S3)288,765
C4.15(C12⋊S3) = C24.5D6φ: C12⋊S3/C2×C3⋊S3C2 ⊆ Aut C4144C4.15(C12:S3)288,766
C4.16(C12⋊S3) = C12.57D12central extension (φ=1)288C4.16(C12:S3)288,279
C4.17(C12⋊S3) = C122⋊C2central extension (φ=1)72C4.17(C12:S3)288,280
C4.18(C12⋊S3) = C12.59D12central extension (φ=1)144C4.18(C12:S3)288,294
C4.19(C12⋊S3) = C12.60D12central extension (φ=1)144C4.19(C12:S3)288,295
C4.20(C12⋊S3) = C24.78D6central extension (φ=1)144C4.20(C12:S3)288,761

׿
×
𝔽