Copied to
clipboard

G = C12⋊S3order 72 = 23·32

1st semidirect product of C12 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: C121S3, C31D12, C325D4, C6.14D6, C4⋊(C3⋊S3), (C3×C12)⋊1C2, (C3×C6).13C22, (C2×C3⋊S3)⋊2C2, C2.4(C2×C3⋊S3), SmallGroup(72,33)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C12⋊S3
C1C3C32C3×C6C2×C3⋊S3 — C12⋊S3
C32C3×C6 — C12⋊S3
C1C2C4

Generators and relations for C12⋊S3
 G = < a,b,c | a12=b3=c2=1, ab=ba, cac=a-1, cbc=b-1 >

18C2
18C2
9C22
9C22
6S3
6S3
6S3
6S3
6S3
6S3
6S3
6S3
9D4
3D6
3D6
3D6
3D6
3D6
3D6
3D6
3D6
2C3⋊S3
2C3⋊S3
3D12
3D12
3D12
3D12

Character table of C12⋊S3

 class 12A2B2C3A3B3C3D46A6B6C6D12A12B12C12D12E12F12G12H
 size 11181822222222222222222
ρ1111111111111111111111    trivial
ρ211-1-111111111111111111    linear of order 2
ρ311-111111-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ4111-11111-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ52200-12-1-12-1-12-1-1-1-1-1-1-122    orthogonal lifted from S3
ρ62200-1-12-1-2-1-1-12-211-21111    orthogonal lifted from D6
ρ72200-12-1-1-2-1-12-1111111-2-2    orthogonal lifted from D6
ρ822002-1-1-1-2-12-1-111-21-2111    orthogonal lifted from D6
ρ922002-1-1-12-12-1-1-1-12-12-1-1-1    orthogonal lifted from S3
ρ102200-1-12-12-1-1-122-1-12-1-1-1-1    orthogonal lifted from S3
ρ112200-1-1-12-22-1-1-11-2111-211    orthogonal lifted from D6
ρ122-20022220-2-2-2-200000000    orthogonal lifted from D4
ρ132200-1-1-1222-1-1-1-12-1-1-12-1-1    orthogonal lifted from S3
ρ142-200-1-1-120-2111-3033-303-3    orthogonal lifted from D12
ρ152-200-12-1-1011-21333-3-3-300    orthogonal lifted from D12
ρ162-2002-1-1-101-211-33030-3-33    orthogonal lifted from D12
ρ172-200-12-1-1011-21-3-3-333300    orthogonal lifted from D12
ρ182-200-1-12-10111-203-303-33-3    orthogonal lifted from D12
ρ192-200-1-12-10111-20-330-33-33    orthogonal lifted from D12
ρ202-2002-1-1-101-2113-30-3033-3    orthogonal lifted from D12
ρ212-200-1-1-120-211130-3-330-33    orthogonal lifted from D12

Smallest permutation representation of C12⋊S3
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 35 13)(2 36 14)(3 25 15)(4 26 16)(5 27 17)(6 28 18)(7 29 19)(8 30 20)(9 31 21)(10 32 22)(11 33 23)(12 34 24)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 36)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,35,13)(2,36,14)(3,25,15)(4,26,16)(5,27,17)(6,28,18)(7,29,19)(8,30,20)(9,31,21)(10,32,22)(11,33,23)(12,34,24), (2,12)(3,11)(4,10)(5,9)(6,8)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,35,13)(2,36,14)(3,25,15)(4,26,16)(5,27,17)(6,28,18)(7,29,19)(8,30,20)(9,31,21)(10,32,22)(11,33,23)(12,34,24), (2,12)(3,11)(4,10)(5,9)(6,8)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,35,13),(2,36,14),(3,25,15),(4,26,16),(5,27,17),(6,28,18),(7,29,19),(8,30,20),(9,31,21),(10,32,22),(11,33,23),(12,34,24)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,36)]])

C12⋊S3 is a maximal subgroup of
C3⋊D24  C325SD16  C242S3  C325D8  C327D8  C3211SD16  D6.6D6  S3×D12  C12.59D6  D4×C3⋊S3  C12.26D6  He34D4  C36⋊S3  C338D4  C3312D4  C12⋊S4  C12.7S4  C15⋊D12  C60⋊S3
C12⋊S3 is a maximal quotient of
C242S3  C325D8  C325Q16  C12⋊Dic3  C6.11D12  C36⋊S3  He35D4  C338D4  C3312D4  C12⋊S4  C15⋊D12  C60⋊S3

Matrix representation of C12⋊S3 in GL4(𝔽13) generated by

0100
121200
0063
00103
,
1000
0100
001212
0010
,
1000
121200
001212
0001
G:=sub<GL(4,GF(13))| [0,12,0,0,1,12,0,0,0,0,6,10,0,0,3,3],[1,0,0,0,0,1,0,0,0,0,12,1,0,0,12,0],[1,12,0,0,0,12,0,0,0,0,12,0,0,0,12,1] >;

C12⋊S3 in GAP, Magma, Sage, TeX

C_{12}\rtimes S_3
% in TeX

G:=Group("C12:S3");
// GroupNames label

G:=SmallGroup(72,33);
// by ID

G=gap.SmallGroup(72,33);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-3,61,26,323,1204]);
// Polycyclic

G:=Group<a,b,c|a^12=b^3=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C12⋊S3 in TeX
Character table of C12⋊S3 in TeX

׿
×
𝔽