Extensions 1→N→G→Q→1 with N=S3×D4 and Q=S3

Direct product G=N×Q with N=S3×D4 and Q=S3
dρLabelID
S32×D4248+S3^2xD4288,958

Semidirect products G=N:Q with N=S3×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×D4)⋊1S3 = S3×D4⋊S3φ: S3/C3C2 ⊆ Out S3×D4488+(S3xD4):1S3288,572
(S3×D4)⋊2S3 = D129D6φ: S3/C3C2 ⊆ Out S3×D4488-(S3xD4):2S3288,580
(S3×D4)⋊3S3 = D12.7D6φ: S3/C3C2 ⊆ Out S3×D4488+(S3xD4):3S3288,582
(S3×D4)⋊4S3 = D1212D6φ: S3/C3C2 ⊆ Out S3×D4488-(S3xD4):4S3288,961
(S3×D4)⋊5S3 = D1213D6φ: S3/C3C2 ⊆ Out S3×D4248+(S3xD4):5S3288,962
(S3×D4)⋊6S3 = S3×D42S3φ: trivial image488-(S3xD4):6S3288,959

Non-split extensions G=N.Q with N=S3×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×D4).S3 = S3×D4.S3φ: S3/C3C2 ⊆ Out S3×D4488-(S3xD4).S3288,576

׿
×
𝔽