Extensions 1→N→G→Q→1 with N=D42S3 and Q=S3

Direct product G=N×Q with N=D42S3 and Q=S3
dρLabelID
S3×D42S3488-S3xD4:2S3288,959

Semidirect products G=N:Q with N=D42S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D42S31S3 = Dic63D6φ: S3/C3C2 ⊆ Out D42S3488+D4:2S3:1S3288,573
D42S32S3 = D12.22D6φ: S3/C3C2 ⊆ Out D42S3488-D4:2S3:2S3288,581
D42S33S3 = Dic6.20D6φ: S3/C3C2 ⊆ Out D42S3488+D4:2S3:3S3288,583
D42S34S3 = Dic6.24D6φ: S3/C3C2 ⊆ Out D42S3488-D4:2S3:4S3288,957
D42S35S3 = D1213D6φ: S3/C3C2 ⊆ Out D42S3248+D4:2S3:5S3288,962
D42S36S3 = Dic612D6φ: trivial image248+D4:2S3:6S3288,960

Non-split extensions G=N.Q with N=D42S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D42S3.S3 = Dic6.19D6φ: S3/C3C2 ⊆ Out D42S3488-D4:2S3.S3288,577

׿
×
𝔽