Extensions 1→N→G→Q→1 with N=Q8:3S3 and Q=S3

Direct product G=NxQ with N=Q8:3S3 and Q=S3
dρLabelID
S3xQ8:3S3488+S3xQ8:3S3288,966

Semidirect products G=N:Q with N=Q8:3S3 and Q=S3
extensionφ:Q→Out NdρLabelID
Q8:3S3:1S3 = Dic3.4S4φ: S3/C1S3 ⊆ Out Q8:3S3484Q8:3S3:1S3288,845
Q8:3S3:2S3 = Dic3.5S4φ: S3/C1S3 ⊆ Out Q8:3S3484+Q8:3S3:2S3288,846
Q8:3S3:3S3 = GL2(F3):S3φ: S3/C1S3 ⊆ Out Q8:3S3484+Q8:3S3:3S3288,847
Q8:3S3:4S3 = D12:6D6φ: S3/C3C2 ⊆ Out Q8:3S3488+Q8:3S3:4S3288,587
Q8:3S3:5S3 = D12.12D6φ: S3/C3C2 ⊆ Out Q8:3S3968-Q8:3S3:5S3288,595
Q8:3S3:6S3 = D12.13D6φ: S3/C3C2 ⊆ Out Q8:3S3488+Q8:3S3:6S3288,597
Q8:3S3:7S3 = D12.25D6φ: S3/C3C2 ⊆ Out Q8:3S3488-Q8:3S3:7S3288,963
Q8:3S3:8S3 = D12:16D6φ: S3/C3C2 ⊆ Out Q8:3S3488+Q8:3S3:8S3288,968
Q8:3S3:9S3 = D12:15D6φ: trivial image488-Q8:3S3:9S3288,967

Non-split extensions G=N.Q with N=Q8:3S3 and Q=S3
extensionφ:Q→Out NdρLabelID
Q8:3S3.S3 = CSU2(F3):S3φ: S3/C1S3 ⊆ Out Q8:3S3964Q8:3S3.S3288,844
Q8:3S3.2S3 = D12.11D6φ: S3/C3C2 ⊆ Out Q8:3S3968-Q8:3S3.2S3288,591

׿
x
:
Z
F
o
wr
Q
<