metabelian, supersoluble, monomial
Aliases: D12⋊15D6, Q8⋊7S32, (C4×S3)⋊10D6, (C3×Q8)⋊12D6, Q8⋊3S3⋊9S3, D6⋊D6⋊13C2, C6.26(S3×C23), (C3×C6).26C24, D12⋊5S3⋊12C2, (S3×C12)⋊10C22, D6⋊S3⋊6C22, (C3×D12)⋊17C22, (S3×C6).14C23, C12.38(C22×S3), (C3×C12).38C23, D6.14(C22×S3), (S3×Dic3)⋊15C22, C3⋊Dic3.26C23, (Q8×C32)⋊11C22, C32⋊4Q8⋊12C22, Dic3.27(C22×S3), (C3×Dic3).27C23, C6.D6.15C22, (C4×S32)⋊8C2, C4.38(C2×S32), C3⋊6(S3×C4○D4), (Q8×C3⋊S3)⋊8C2, C3⋊S3⋊3(C4○D4), C2.28(C22×S32), C32⋊10(C2×C4○D4), (C2×S32).14C22, (C3×Q8⋊3S3)⋊9C2, (C4×C3⋊S3).47C22, (C2×C3⋊S3).48C23, SmallGroup(288,967)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12⋊15D6
G = < a,b,c,d | a12=b2=c6=d2=1, bab=a-1, cac-1=a5, ad=da, cbc-1=a10b, dbd=a6b, dcd=c-1 >
Subgroups: 1250 in 347 conjugacy classes, 110 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C22×C4, C2×D4, C2×Q8, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C3×Q8, C22×S3, C2×C4○D4, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×C2×C4, C4○D12, S3×D4, D4⋊2S3, S3×Q8, Q8⋊3S3, C3×C4○D4, S3×Dic3, C6.D6, D6⋊S3, S3×C12, C3×D12, C32⋊4Q8, C4×C3⋊S3, Q8×C32, C2×S32, S3×C4○D4, D12⋊5S3, C4×S32, D6⋊D6, C3×Q8⋊3S3, Q8×C3⋊S3, D12⋊15D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, S32, S3×C23, C2×S32, S3×C4○D4, C22×S32, D12⋊15D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 25)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 16 5 24 9 20)(2 21 6 17 10 13)(3 14 7 22 11 18)(4 19 8 15 12 23)(25 46 33 38 29 42)(26 39 34 43 30 47)(27 44 35 48 31 40)(28 37 36 41 32 45)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,25)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,16,5,24,9,20)(2,21,6,17,10,13)(3,14,7,22,11,18)(4,19,8,15,12,23)(25,46,33,38,29,42)(26,39,34,43,30,47)(27,44,35,48,31,40)(28,37,36,41,32,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,25)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,16,5,24,9,20)(2,21,6,17,10,13)(3,14,7,22,11,18)(4,19,8,15,12,23)(25,46,33,38,29,42)(26,39,34,43,30,47)(27,44,35,48,31,40)(28,37,36,41,32,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,25),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,16,5,24,9,20),(2,21,6,17,10,13),(3,14,7,22,11,18),(4,19,8,15,12,23),(25,46,33,38,29,42),(26,39,34,43,30,47),(27,44,35,48,31,40),(28,37,36,41,32,45)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39)]])
45 conjugacy classes
class | 1 | 2A | 2B | ··· | 2G | 2H | 2I | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 6D | ··· | 6I | 12A | ··· | 12F | 12G | 12H | 12I | 12J | 12K | 12L | 12M |
order | 1 | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 6 | ··· | 6 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 18 | 18 | 18 | 2 | 2 | 4 | 12 | ··· | 12 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | C4○D4 | S32 | C2×S32 | S3×C4○D4 | D12⋊15D6 |
kernel | D12⋊15D6 | D12⋊5S3 | C4×S32 | D6⋊D6 | C3×Q8⋊3S3 | Q8×C3⋊S3 | Q8⋊3S3 | C4×S3 | D12 | C3×Q8 | C3⋊S3 | Q8 | C4 | C3 | C1 |
# reps | 1 | 6 | 3 | 3 | 2 | 1 | 2 | 6 | 6 | 2 | 4 | 1 | 3 | 4 | 1 |
Matrix representation of D12⋊15D6 ►in GL6(𝔽13)
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 3 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 10 | 0 | 0 |
0 | 0 | 8 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,11,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,5,0,0,0,0,3,5,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,8,0,0,0,0,10,8,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D12⋊15D6 in GAP, Magma, Sage, TeX
D_{12}\rtimes_{15}D_6
% in TeX
G:=Group("D12:15D6");
// GroupNames label
G:=SmallGroup(288,967);
// by ID
G=gap.SmallGroup(288,967);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,346,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,a*d=d*a,c*b*c^-1=a^10*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations