Extensions 1→N→G→Q→1 with N=D6.6D6 and Q=C2

Direct product G=N×Q with N=D6.6D6 and Q=C2
dρLabelID
C2×D6.6D648C2xD6.6D6288,949

Semidirect products G=N:Q with N=D6.6D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D6.6D61C2 = C241D6φ: C2/C1C2 ⊆ Out D6.6D6484+D6.6D6:1C2288,442
D6.6D62C2 = D6.1D12φ: C2/C1C2 ⊆ Out D6.6D6484D6.6D6:2C2288,454
D6.6D63C2 = D6.3D12φ: C2/C1C2 ⊆ Out D6.6D6484+D6.6D6:3C2288,456
D6.6D64C2 = D12.7D6φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6:4C2288,582
D6.6D65C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6:5C2288,583
D6.6D66C2 = D12.13D6φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6:6C2288,597
D6.6D67C2 = D12.33D6φ: C2/C1C2 ⊆ Out D6.6D6484D6.6D6:7C2288,945
D6.6D68C2 = D1227D6φ: C2/C1C2 ⊆ Out D6.6D6244+D6.6D6:8C2288,956
D6.6D69C2 = Dic612D6φ: C2/C1C2 ⊆ Out D6.6D6248+D6.6D6:9C2288,960
D6.6D610C2 = D1213D6φ: C2/C1C2 ⊆ Out D6.6D6248+D6.6D6:10C2288,962
D6.6D611C2 = Dic6.26D6φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6:11C2288,964
D6.6D612C2 = S3×Q83S3φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6:12C2288,966
D6.6D613C2 = S3×C4○D12φ: trivial image484D6.6D6:13C2288,953

Non-split extensions G=N.Q with N=D6.6D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D6.6D6.1C2 = Dic12⋊S3φ: C2/C1C2 ⊆ Out D6.6D6484D6.6D6.1C2288,449
D6.6D6.2C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out D6.6D6488+D6.6D6.2C2288,596

׿
×
𝔽