direct product, metabelian, supersoluble, monomial
Aliases: C2×D6.6D6, Dic6⋊24D6, C62.133C23, (C4×S3)⋊13D6, C6⋊1(C4○D12), C6.8(S3×C23), (C3×C6).8C24, C6⋊1(Q8⋊3S3), (C6×Dic6)⋊21C2, (C2×Dic6)⋊15S3, (C2×C12).285D6, (S3×C12)⋊17C22, (S3×C6).22C23, D6.20(C22×S3), (C22×S3).72D6, C6.D6⋊5C22, C12⋊S3⋊20C22, C3⋊D12⋊12C22, C12.132(C22×S3), (C6×C12).162C22, (C3×C12).116C23, (C2×Dic3).117D6, (C3×Dic6)⋊27C22, (C3×Dic3).6C23, Dic3.26(C22×S3), (C6×Dic3).47C22, (S3×C2×C4)⋊4S3, (S3×C2×C12)⋊8C2, C4.63(C2×S32), (C2×C4).87S32, C3⋊1(C2×C4○D12), C32⋊4(C2×C4○D4), (C3×C6)⋊4(C4○D4), C2.11(C22×S32), C22.63(C2×S32), C3⋊1(C2×Q8⋊3S3), (C2×C6.D6)⋊3C2, (C2×C12⋊S3)⋊17C2, (C2×C3⋊D12)⋊19C2, (C2×C3⋊S3).18C23, (S3×C2×C6).105C22, (C2×C6).150(C22×S3), (C22×C3⋊S3).57C22, SmallGroup(288,949)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — S3×C6 — C3⋊D12 — C2×C3⋊D12 — C2×D6.6D6 |
Generators and relations for C2×D6.6D6
G = < a,b,c,d,e | a2=b6=c2=1, d6=e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=b3d5 >
Subgroups: 1346 in 355 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2 [×2], C2 [×6], C3 [×2], C3, C4 [×2], C4 [×6], C22, C22 [×12], S3 [×14], C6 [×2], C6 [×4], C6 [×5], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], C32, Dic3 [×6], C12 [×4], C12 [×8], D6 [×2], D6 [×26], C2×C6 [×2], C2×C6 [×5], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], C3×S3 [×2], C3⋊S3 [×4], C3×C6, C3×C6 [×2], Dic6 [×4], C4×S3 [×4], C4×S3 [×16], D12 [×20], C2×Dic3, C2×Dic3 [×2], C3⋊D4 [×8], C2×C12 [×2], C2×C12 [×8], C3×Q8 [×4], C22×S3, C22×S3 [×6], C22×C6, C2×C4○D4, C3×Dic3 [×6], C3×C12 [×2], S3×C6 [×2], S3×C6 [×2], C2×C3⋊S3 [×4], C2×C3⋊S3 [×4], C62, C2×Dic6, S3×C2×C4, S3×C2×C4 [×4], C2×D12 [×5], C4○D12 [×8], Q8⋊3S3 [×8], C2×C3⋊D4 [×2], C22×C12, C6×Q8, C6.D6 [×8], C3⋊D12 [×8], C3×Dic6 [×4], S3×C12 [×4], C6×Dic3, C6×Dic3 [×2], C12⋊S3 [×4], C6×C12, S3×C2×C6, C22×C3⋊S3 [×2], C2×C4○D12, C2×Q8⋊3S3, D6.6D6 [×8], C2×C6.D6 [×2], C2×C3⋊D12 [×2], C6×Dic6, S3×C2×C12, C2×C12⋊S3, C2×D6.6D6
Quotients: C1, C2 [×15], C22 [×35], S3 [×2], C23 [×15], D6 [×14], C4○D4 [×2], C24, C22×S3 [×14], C2×C4○D4, S32, C4○D12 [×2], Q8⋊3S3 [×2], S3×C23 [×2], C2×S32 [×3], C2×C4○D12, C2×Q8⋊3S3, D6.6D6 [×2], C22×S32, C2×D6.6D6
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 11 9 7 5 3)(2 12 10 8 6 4)(13 23 21 19 17 15)(14 24 22 20 18 16)(25 27 29 31 33 35)(26 28 30 32 34 36)(37 39 41 43 45 47)(38 40 42 44 46 48)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 25)(12 26)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28 7 34)(2 27 8 33)(3 26 9 32)(4 25 10 31)(5 36 11 30)(6 35 12 29)(13 46 19 40)(14 45 20 39)(15 44 21 38)(16 43 22 37)(17 42 23 48)(18 41 24 47)
G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,39,41,43,45,47)(38,40,42,44,46,48), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,7,34)(2,27,8,33)(3,26,9,32)(4,25,10,31)(5,36,11,30)(6,35,12,29)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,39,41,43,45,47)(38,40,42,44,46,48), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,7,34)(2,27,8,33)(3,26,9,32)(4,25,10,31)(5,36,11,30)(6,35,12,29)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47) );
G=PermutationGroup([(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,11,9,7,5,3),(2,12,10,8,6,4),(13,23,21,19,17,15),(14,24,22,20,18,16),(25,27,29,31,33,35),(26,28,30,32,34,36),(37,39,41,43,45,47),(38,40,42,44,46,48)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,25),(12,26),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28,7,34),(2,27,8,33),(3,26,9,32),(4,25,10,31),(5,36,11,30),(6,35,12,29),(13,46,19,40),(14,45,20,39),(15,44,21,38),(16,43,22,37),(17,42,23,48),(18,41,24,47)])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 12O | 12P | 12Q | 12R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 18 | 18 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | Q8⋊3S3 | C2×S32 | C2×S32 | D6.6D6 |
kernel | C2×D6.6D6 | D6.6D6 | C2×C6.D6 | C2×C3⋊D12 | C6×Dic6 | S3×C2×C12 | C2×C12⋊S3 | C2×Dic6 | S3×C2×C4 | Dic6 | C4×S3 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | C6 | C2×C4 | C6 | C4 | C22 | C2 |
# reps | 1 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 3 | 2 | 1 | 4 | 8 | 1 | 2 | 2 | 1 | 4 |
Matrix representation of C2×D6.6D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 12 | 0 | 0 |
0 | 0 | 11 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 8 | 0 | 0 |
0 | 0 | 3 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 2 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,8,11,0,0,0,0,12,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,8,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,2,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
C2×D6.6D6 in GAP, Magma, Sage, TeX
C_2\times D_6._6D_6
% in TeX
G:=Group("C2xD6.6D6");
// GroupNames label
G:=SmallGroup(288,949);
// by ID
G=gap.SmallGroup(288,949);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,346,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^6=c^2=1,d^6=e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d^5>;
// generators/relations