Extensions 1→N→G→Q→1 with N=C2 and Q=D42D9

Direct product G=N×Q with N=C2 and Q=D42D9
dρLabelID
C2×D42D9144C2xD4:2D9288,357


Non-split extensions G=N.Q with N=C2 and Q=D42D9
extensionφ:Q→Aut NdρLabelID
C2.1(D42D9) = C23.16D18central extension (φ=1)144C2.1(D4:2D9)288,87
C2.2(D42D9) = Dic94D4central extension (φ=1)144C2.2(D4:2D9)288,91
C2.3(D42D9) = Dic93Q8central extension (φ=1)288C2.3(D4:2D9)288,97
C2.4(D42D9) = C4⋊C47D9central extension (φ=1)144C2.4(D4:2D9)288,102
C2.5(D42D9) = D4×Dic9central extension (φ=1)144C2.5(D4:2D9)288,144
C2.6(D42D9) = C222Dic18central stem extension (φ=1)144C2.6(D4:2D9)288,88
C2.7(D42D9) = C23.8D18central stem extension (φ=1)144C2.7(D4:2D9)288,89
C2.8(D42D9) = C23.9D18central stem extension (φ=1)144C2.8(D4:2D9)288,93
C2.9(D42D9) = Dic9.D4central stem extension (φ=1)144C2.9(D4:2D9)288,95
C2.10(D42D9) = C22.4D36central stem extension (φ=1)144C2.10(D4:2D9)288,96
C2.11(D42D9) = Dic9.Q8central stem extension (φ=1)288C2.11(D4:2D9)288,99
C2.12(D42D9) = C36.3Q8central stem extension (φ=1)288C2.12(D4:2D9)288,100
C2.13(D42D9) = D182Q8central stem extension (φ=1)144C2.13(D4:2D9)288,107
C2.14(D42D9) = C4⋊C4⋊D9central stem extension (φ=1)144C2.14(D4:2D9)288,108
C2.15(D42D9) = C23.23D18central stem extension (φ=1)144C2.15(D4:2D9)288,145
C2.16(D42D9) = C36.17D4central stem extension (φ=1)144C2.16(D4:2D9)288,146
C2.17(D42D9) = C362D4central stem extension (φ=1)144C2.17(D4:2D9)288,148
C2.18(D42D9) = Dic9⋊D4central stem extension (φ=1)144C2.18(D4:2D9)288,149

׿
×
𝔽