Copied to
clipboard

G = Dic9⋊D4order 288 = 25·32

2nd semidirect product of Dic9 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic93D4, C23.14D18, (C2×D4)⋊5D9, (C2×C18)⋊3D4, (D4×C18)⋊9C2, C95(C4⋊D4), C2.27(D4×D9), D18⋊C415C2, (C6×D4).21S3, (C2×C4).16D18, C18.38(C2×D4), C6.102(S3×D4), Dic9⋊C415C2, (C2×C12).217D6, C222(C9⋊D4), (C22×C6).52D6, C18.32(C4○D4), C3.(C23.14D6), (C2×C18).54C23, (C2×C36).61C22, (C22×Dic9)⋊6C2, C18.D412C2, C2.18(D42D9), C6.89(D42S3), C22.61(C22×D9), (C22×C18).21C22, (C2×Dic9).40C22, (C22×D9).11C22, (C2×C9⋊D4)⋊6C2, C6.99(C2×C3⋊D4), C2.15(C2×C9⋊D4), (C2×C6).6(C3⋊D4), (C2×C6).211(C22×S3), SmallGroup(288,149)

Series: Derived Chief Lower central Upper central

C1C2×C18 — Dic9⋊D4
C1C3C9C18C2×C18C22×D9C2×C9⋊D4 — Dic9⋊D4
C9C2×C18 — Dic9⋊D4
C1C22C2×D4

Generators and relations for Dic9⋊D4
 G = < a,b,c,d | a18=c4=d2=1, b2=a9, bab-1=a-1, ac=ca, ad=da, cbc-1=a9b, bd=db, dcd=c-1 >

Subgroups: 612 in 141 conjugacy classes, 46 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, D9, C18, C18, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, Dic9, Dic9, C36, D18, C2×C18, C2×C18, C2×C18, Dic3⋊C4, D6⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C6×D4, C2×Dic9, C2×Dic9, C9⋊D4, C2×C36, D4×C9, C22×D9, C22×C18, C23.14D6, Dic9⋊C4, D18⋊C4, C18.D4, C22×Dic9, C2×C9⋊D4, D4×C18, Dic9⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, C3⋊D4, C22×S3, C4⋊D4, D18, S3×D4, D42S3, C2×C3⋊D4, C9⋊D4, C22×D9, C23.14D6, D4×D9, D42D9, C2×C9⋊D4, Dic9⋊D4

Smallest permutation representation of Dic9⋊D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 70 10 61)(2 69 11 60)(3 68 12 59)(4 67 13 58)(5 66 14 57)(6 65 15 56)(7 64 16 55)(8 63 17 72)(9 62 18 71)(19 50 28 41)(20 49 29 40)(21 48 30 39)(22 47 31 38)(23 46 32 37)(24 45 33 54)(25 44 34 53)(26 43 35 52)(27 42 36 51)(73 134 82 143)(74 133 83 142)(75 132 84 141)(76 131 85 140)(77 130 86 139)(78 129 87 138)(79 128 88 137)(80 127 89 136)(81 144 90 135)(91 111 100 120)(92 110 101 119)(93 109 102 118)(94 126 103 117)(95 125 104 116)(96 124 105 115)(97 123 106 114)(98 122 107 113)(99 121 108 112)
(1 126 28 84)(2 109 29 85)(3 110 30 86)(4 111 31 87)(5 112 32 88)(6 113 33 89)(7 114 34 90)(8 115 35 73)(9 116 36 74)(10 117 19 75)(11 118 20 76)(12 119 21 77)(13 120 22 78)(14 121 23 79)(15 122 24 80)(16 123 25 81)(17 124 26 82)(18 125 27 83)(37 128 66 108)(38 129 67 91)(39 130 68 92)(40 131 69 93)(41 132 70 94)(42 133 71 95)(43 134 72 96)(44 135 55 97)(45 136 56 98)(46 137 57 99)(47 138 58 100)(48 139 59 101)(49 140 60 102)(50 141 61 103)(51 142 62 104)(52 143 63 105)(53 144 64 106)(54 127 65 107)
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 101)(9 102)(10 103)(11 104)(12 105)(13 106)(14 107)(15 108)(16 91)(17 92)(18 93)(19 141)(20 142)(21 143)(22 144)(23 127)(24 128)(25 129)(26 130)(27 131)(28 132)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 80)(38 81)(39 82)(40 83)(41 84)(42 85)(43 86)(44 87)(45 88)(46 89)(47 90)(48 73)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 109)(72 110)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,70,10,61)(2,69,11,60)(3,68,12,59)(4,67,13,58)(5,66,14,57)(6,65,15,56)(7,64,16,55)(8,63,17,72)(9,62,18,71)(19,50,28,41)(20,49,29,40)(21,48,30,39)(22,47,31,38)(23,46,32,37)(24,45,33,54)(25,44,34,53)(26,43,35,52)(27,42,36,51)(73,134,82,143)(74,133,83,142)(75,132,84,141)(76,131,85,140)(77,130,86,139)(78,129,87,138)(79,128,88,137)(80,127,89,136)(81,144,90,135)(91,111,100,120)(92,110,101,119)(93,109,102,118)(94,126,103,117)(95,125,104,116)(96,124,105,115)(97,123,106,114)(98,122,107,113)(99,121,108,112), (1,126,28,84)(2,109,29,85)(3,110,30,86)(4,111,31,87)(5,112,32,88)(6,113,33,89)(7,114,34,90)(8,115,35,73)(9,116,36,74)(10,117,19,75)(11,118,20,76)(12,119,21,77)(13,120,22,78)(14,121,23,79)(15,122,24,80)(16,123,25,81)(17,124,26,82)(18,125,27,83)(37,128,66,108)(38,129,67,91)(39,130,68,92)(40,131,69,93)(41,132,70,94)(42,133,71,95)(43,134,72,96)(44,135,55,97)(45,136,56,98)(46,137,57,99)(47,138,58,100)(48,139,59,101)(49,140,60,102)(50,141,61,103)(51,142,62,104)(52,143,63,105)(53,144,64,106)(54,127,65,107), (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,91)(17,92)(18,93)(19,141)(20,142)(21,143)(22,144)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,109)(72,110)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,70,10,61)(2,69,11,60)(3,68,12,59)(4,67,13,58)(5,66,14,57)(6,65,15,56)(7,64,16,55)(8,63,17,72)(9,62,18,71)(19,50,28,41)(20,49,29,40)(21,48,30,39)(22,47,31,38)(23,46,32,37)(24,45,33,54)(25,44,34,53)(26,43,35,52)(27,42,36,51)(73,134,82,143)(74,133,83,142)(75,132,84,141)(76,131,85,140)(77,130,86,139)(78,129,87,138)(79,128,88,137)(80,127,89,136)(81,144,90,135)(91,111,100,120)(92,110,101,119)(93,109,102,118)(94,126,103,117)(95,125,104,116)(96,124,105,115)(97,123,106,114)(98,122,107,113)(99,121,108,112), (1,126,28,84)(2,109,29,85)(3,110,30,86)(4,111,31,87)(5,112,32,88)(6,113,33,89)(7,114,34,90)(8,115,35,73)(9,116,36,74)(10,117,19,75)(11,118,20,76)(12,119,21,77)(13,120,22,78)(14,121,23,79)(15,122,24,80)(16,123,25,81)(17,124,26,82)(18,125,27,83)(37,128,66,108)(38,129,67,91)(39,130,68,92)(40,131,69,93)(41,132,70,94)(42,133,71,95)(43,134,72,96)(44,135,55,97)(45,136,56,98)(46,137,57,99)(47,138,58,100)(48,139,59,101)(49,140,60,102)(50,141,61,103)(51,142,62,104)(52,143,63,105)(53,144,64,106)(54,127,65,107), (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,91)(17,92)(18,93)(19,141)(20,142)(21,143)(22,144)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,109)(72,110) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,70,10,61),(2,69,11,60),(3,68,12,59),(4,67,13,58),(5,66,14,57),(6,65,15,56),(7,64,16,55),(8,63,17,72),(9,62,18,71),(19,50,28,41),(20,49,29,40),(21,48,30,39),(22,47,31,38),(23,46,32,37),(24,45,33,54),(25,44,34,53),(26,43,35,52),(27,42,36,51),(73,134,82,143),(74,133,83,142),(75,132,84,141),(76,131,85,140),(77,130,86,139),(78,129,87,138),(79,128,88,137),(80,127,89,136),(81,144,90,135),(91,111,100,120),(92,110,101,119),(93,109,102,118),(94,126,103,117),(95,125,104,116),(96,124,105,115),(97,123,106,114),(98,122,107,113),(99,121,108,112)], [(1,126,28,84),(2,109,29,85),(3,110,30,86),(4,111,31,87),(5,112,32,88),(6,113,33,89),(7,114,34,90),(8,115,35,73),(9,116,36,74),(10,117,19,75),(11,118,20,76),(12,119,21,77),(13,120,22,78),(14,121,23,79),(15,122,24,80),(16,123,25,81),(17,124,26,82),(18,125,27,83),(37,128,66,108),(38,129,67,91),(39,130,68,92),(40,131,69,93),(41,132,70,94),(42,133,71,95),(43,134,72,96),(44,135,55,97),(45,136,56,98),(46,137,57,99),(47,138,58,100),(48,139,59,101),(49,140,60,102),(50,141,61,103),(51,142,62,104),(52,143,63,105),(53,144,64,106),(54,127,65,107)], [(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,101),(9,102),(10,103),(11,104),(12,105),(13,106),(14,107),(15,108),(16,91),(17,92),(18,93),(19,141),(20,142),(21,143),(22,144),(23,127),(24,128),(25,129),(26,130),(27,131),(28,132),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,80),(38,81),(39,82),(40,83),(41,84),(42,85),(43,86),(44,87),(45,88),(46,89),(47,90),(48,73),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,109),(72,110)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222234444446666666999121218···1818···1836···36
size1111224362418181818362224444222442···24···44···4

54 irreducible representations

dim1111111222222222224444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2S3D4D4D6D6C4○D4D9C3⋊D4D18D18C9⋊D4S3×D4D42S3D4×D9D42D9
kernelDic9⋊D4Dic9⋊C4D18⋊C4C18.D4C22×Dic9C2×C9⋊D4D4×C18C6×D4Dic9C2×C18C2×C12C22×C6C18C2×D4C2×C6C2×C4C23C22C6C6C2C2
# reps11111211221223436121133

Matrix representation of Dic9⋊D4 in GL4(𝔽37) generated by

173100
61100
0010
0001
,
21100
133500
00360
00036
,
72300
143000
003635
0011
,
36000
03600
003635
0001
G:=sub<GL(4,GF(37))| [17,6,0,0,31,11,0,0,0,0,1,0,0,0,0,1],[2,13,0,0,11,35,0,0,0,0,36,0,0,0,0,36],[7,14,0,0,23,30,0,0,0,0,36,1,0,0,35,1],[36,0,0,0,0,36,0,0,0,0,36,0,0,0,35,1] >;

Dic9⋊D4 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes D_4
% in TeX

G:=Group("Dic9:D4");
// GroupNames label

G:=SmallGroup(288,149);
// by ID

G=gap.SmallGroup(288,149);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,254,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^18=c^4=d^2=1,b^2=a^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^9*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽