# Extensions 1→N→G→Q→1 with N=S3×C8 and Q=C6

Direct product G=N×Q with N=S3×C8 and Q=C6
dρLabelID
S3×C2×C2496S3xC2xC24288,670

Semidirect products G=N:Q with N=S3×C8 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1C6 = C3×S3×D8φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):1C6288,681
(S3×C8)⋊2C6 = C3×D83S3φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):2C6288,683
(S3×C8)⋊3C6 = C3×D24⋊C2φ: C6/C3C2 ⊆ Out S3×C8964(S3xC8):3C6288,690
(S3×C8)⋊4C6 = C3×S3×SD16φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):4C6288,684
(S3×C8)⋊5C6 = C3×Q8.7D6φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):5C6288,687
(S3×C8)⋊6C6 = C3×C8○D12φ: C6/C3C2 ⊆ Out S3×C8482(S3xC8):6C6288,672
(S3×C8)⋊7C6 = C3×S3×M4(2)φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):7C6288,677
(S3×C8)⋊8C6 = C3×D12.C4φ: C6/C3C2 ⊆ Out S3×C8484(S3xC8):8C6288,678

Non-split extensions G=N.Q with N=S3×C8 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C8).1C6 = C3×S3×Q16φ: C6/C3C2 ⊆ Out S3×C8964(S3xC8).1C6288,688
(S3×C8).2C6 = C3×D6.C8φ: C6/C3C2 ⊆ Out S3×C8962(S3xC8).2C6288,232
(S3×C8).3C6 = S3×C48φ: trivial image962(S3xC8).3C6288,231

׿
×
𝔽