Extensions 1→N→G→Q→1 with N=C12 and Q=Dic6

Direct product G=NxQ with N=C12 and Q=Dic6
dρLabelID
C12xDic696C12xDic6288,639

Semidirect products G=N:Q with N=C12 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C12:1Dic6 = C12:Dic6φ: Dic6/C6C22 ⊆ Aut C1296C12:1Dic6288,567
C12:2Dic6 = C12:2Dic6φ: Dic6/C6C22 ⊆ Aut C12288C12:2Dic6288,745
C12:3Dic6 = C12:3Dic6φ: Dic6/Dic3C2 ⊆ Aut C1296C12:3Dic6288,566
C12:4Dic6 = C4xC32:2Q8φ: Dic6/Dic3C2 ⊆ Aut C1296C12:4Dic6288,565
C12:5Dic6 = C3xC12:Q8φ: Dic6/Dic3C2 ⊆ Aut C1296C12:5Dic6288,659
C12:6Dic6 = C12:6Dic6φ: Dic6/C12C2 ⊆ Aut C12288C12:6Dic6288,726
C12:7Dic6 = C4xC32:4Q8φ: Dic6/C12C2 ⊆ Aut C12288C12:7Dic6288,725
C12:8Dic6 = C3xC12:2Q8φ: Dic6/C12C2 ⊆ Aut C1296C12:8Dic6288,640

Non-split extensions G=N.Q with N=C12 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C12.1Dic6 = C36.Q8φ: Dic6/C6C22 ⊆ Aut C12288C12.1Dic6288,14
C12.2Dic6 = C4.Dic18φ: Dic6/C6C22 ⊆ Aut C12288C12.2Dic6288,15
C12.3Dic6 = C36:Q8φ: Dic6/C6C22 ⊆ Aut C12288C12.3Dic6288,98
C12.4Dic6 = C36.3Q8φ: Dic6/C6C22 ⊆ Aut C12288C12.4Dic6288,100
C12.5Dic6 = C12.Dic6φ: Dic6/C6C22 ⊆ Aut C1296C12.5Dic6288,221
C12.6Dic6 = C12.6Dic6φ: Dic6/C6C22 ⊆ Aut C1296C12.6Dic6288,222
C12.7Dic6 = C6.18D24φ: Dic6/C6C22 ⊆ Aut C1296C12.7Dic6288,223
C12.8Dic6 = C12.8Dic6φ: Dic6/C6C22 ⊆ Aut C1296C12.8Dic6288,224
C12.9Dic6 = C12.9Dic6φ: Dic6/C6C22 ⊆ Aut C12288C12.9Dic6288,282
C12.10Dic6 = C12.10Dic6φ: Dic6/C6C22 ⊆ Aut C12288C12.10Dic6288,283
C12.11Dic6 = C62.39C23φ: Dic6/C6C22 ⊆ Aut C1296C12.11Dic6288,517
C12.12Dic6 = C62.42C23φ: Dic6/C6C22 ⊆ Aut C1296C12.12Dic6288,520
C12.13Dic6 = C62.234C23φ: Dic6/C6C22 ⊆ Aut C12288C12.13Dic6288,747
C12.14Dic6 = C12.81D12φ: Dic6/Dic3C2 ⊆ Aut C1296C12.14Dic6288,219
C12.15Dic6 = C12.15Dic6φ: Dic6/Dic3C2 ⊆ Aut C1296C12.15Dic6288,220
C12.16Dic6 = C3xC6.Q16φ: Dic6/Dic3C2 ⊆ Aut C1296C12.16Dic6288,241
C12.17Dic6 = C3xC12.Q8φ: Dic6/Dic3C2 ⊆ Aut C1296C12.17Dic6288,242
C12.18Dic6 = C3xC4.Dic6φ: Dic6/Dic3C2 ⊆ Aut C1296C12.18Dic6288,661
C12.19Dic6 = C8:Dic9φ: Dic6/C12C2 ⊆ Aut C12288C12.19Dic6288,25
C12.20Dic6 = C72:1C4φ: Dic6/C12C2 ⊆ Aut C12288C12.20Dic6288,26
C12.21Dic6 = C36:2Q8φ: Dic6/C12C2 ⊆ Aut C12288C12.21Dic6288,79
C12.22Dic6 = C36.6Q8φ: Dic6/C12C2 ⊆ Aut C12288C12.22Dic6288,80
C12.23Dic6 = C24:2Dic3φ: Dic6/C12C2 ⊆ Aut C12288C12.23Dic6288,292
C12.24Dic6 = C24:1Dic3φ: Dic6/C12C2 ⊆ Aut C12288C12.24Dic6288,293
C12.25Dic6 = C12.25Dic6φ: Dic6/C12C2 ⊆ Aut C12288C12.25Dic6288,727
C12.26Dic6 = C36:C8φ: Dic6/C12C2 ⊆ Aut C12288C12.26Dic6288,11
C12.27Dic6 = Dic9:C8φ: Dic6/C12C2 ⊆ Aut C12288C12.27Dic6288,22
C12.28Dic6 = C4xDic18φ: Dic6/C12C2 ⊆ Aut C12288C12.28Dic6288,78
C12.29Dic6 = C12.57D12φ: Dic6/C12C2 ⊆ Aut C12288C12.29Dic6288,279
C12.30Dic6 = C12.30Dic6φ: Dic6/C12C2 ⊆ Aut C12288C12.30Dic6288,289
C12.31Dic6 = C3xC8:Dic3φ: Dic6/C12C2 ⊆ Aut C1296C12.31Dic6288,251
C12.32Dic6 = C3xC24:1C4φ: Dic6/C12C2 ⊆ Aut C1296C12.32Dic6288,252
C12.33Dic6 = C3xC12.6Q8φ: Dic6/C12C2 ⊆ Aut C1296C12.33Dic6288,641
C12.34Dic6 = C3xC12:C8central extension (φ=1)96C12.34Dic6288,238
C12.35Dic6 = C3xDic3:C8central extension (φ=1)96C12.35Dic6288,248

׿
x
:
Z
F
o
wr
Q
<