Copied to
clipboard

G = C12.81D12order 288 = 25·32

12nd non-split extension by C12 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: C12.81D12, C12.14Dic6, Dic3⋊(C3⋊C8), C6.21(S3×C8), C326(C4⋊C8), (C3×Dic3)⋊1C8, C31(C12⋊C8), (C3×C12).17Q8, C32(Dic3⋊C8), (C3×C12).112D4, (C2×C12).297D6, C62.31(C2×C4), C6.1(C4⋊Dic3), (C4×Dic3).7S3, (C6×Dic3).5C4, C6.13(C8⋊S3), (C3×C6).7M4(2), C12.80(C3⋊D4), C6.1(Dic3⋊C4), (Dic3×C12).1C2, C4.7(C322Q8), C6.3(C4.Dic3), C4.30(C3⋊D12), (C6×C12).202C22, (C2×Dic3).4Dic3, C2.3(D6.Dic3), C22.11(S3×Dic3), C2.1(Dic3⋊Dic3), C6.5(C2×C3⋊C8), C2.5(S3×C3⋊C8), (C6×C3⋊C8).3C2, (C2×C3⋊C8).9S3, (C2×C4).130S32, (C2×C6).68(C4×S3), (C3×C6).20(C2×C8), (C3×C6).18(C4⋊C4), (C2×C6).15(C2×Dic3), (C2×C324C8).14C2, SmallGroup(288,219)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C12.81D12
C1C3C32C3×C6C3×C12C6×C12Dic3×C12 — C12.81D12
C32C3×C6 — C12.81D12
C1C2×C4

Generators and relations for C12.81D12
 G = < a,b,c | a12=b12=1, c2=a9, bab-1=cac-1=a5, cbc-1=b-1 >

Subgroups: 210 in 87 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, C32, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C42, C2×C8, C3×C6, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C12, C4⋊C8, C3×Dic3, C3×Dic3, C3×C12, C62, C2×C3⋊C8, C2×C3⋊C8, C4×Dic3, C4×C12, C2×C24, C3×C3⋊C8, C324C8, C6×Dic3, C6×C12, C12⋊C8, Dic3⋊C8, C6×C3⋊C8, Dic3×C12, C2×C324C8, C12.81D12
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, C2×C8, M4(2), C3⋊C8, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C4⋊C8, S32, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, Dic3⋊C4, C4⋊Dic3, S3×Dic3, C3⋊D12, C322Q8, C12⋊C8, Dic3⋊C8, S3×C3⋊C8, D6.Dic3, Dic3⋊Dic3, C12.81D12

Smallest permutation representation of C12.81D12
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 91 79 44 5 87 83 40 9 95 75 48)(2 96 80 37 6 92 84 45 10 88 76 41)(3 89 81 42 7 85 73 38 11 93 77 46)(4 94 82 47 8 90 74 43 12 86 78 39)(13 27 70 53 21 31 66 57 17 35 62 49)(14 32 71 58 22 36 67 50 18 28 63 54)(15 25 72 51 23 29 68 55 19 33 64 59)(16 30 61 56 24 34 69 60 20 26 65 52)
(1 50 10 59 7 56 4 53)(2 55 11 52 8 49 5 58)(3 60 12 57 9 54 6 51)(13 44 22 41 19 38 16 47)(14 37 23 46 20 43 17 40)(15 42 24 39 21 48 18 45)(25 81 34 78 31 75 28 84)(26 74 35 83 32 80 29 77)(27 79 36 76 33 73 30 82)(61 94 70 91 67 88 64 85)(62 87 71 96 68 93 65 90)(63 92 72 89 69 86 66 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,79,44,5,87,83,40,9,95,75,48)(2,96,80,37,6,92,84,45,10,88,76,41)(3,89,81,42,7,85,73,38,11,93,77,46)(4,94,82,47,8,90,74,43,12,86,78,39)(13,27,70,53,21,31,66,57,17,35,62,49)(14,32,71,58,22,36,67,50,18,28,63,54)(15,25,72,51,23,29,68,55,19,33,64,59)(16,30,61,56,24,34,69,60,20,26,65,52), (1,50,10,59,7,56,4,53)(2,55,11,52,8,49,5,58)(3,60,12,57,9,54,6,51)(13,44,22,41,19,38,16,47)(14,37,23,46,20,43,17,40)(15,42,24,39,21,48,18,45)(25,81,34,78,31,75,28,84)(26,74,35,83,32,80,29,77)(27,79,36,76,33,73,30,82)(61,94,70,91,67,88,64,85)(62,87,71,96,68,93,65,90)(63,92,72,89,69,86,66,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,79,44,5,87,83,40,9,95,75,48)(2,96,80,37,6,92,84,45,10,88,76,41)(3,89,81,42,7,85,73,38,11,93,77,46)(4,94,82,47,8,90,74,43,12,86,78,39)(13,27,70,53,21,31,66,57,17,35,62,49)(14,32,71,58,22,36,67,50,18,28,63,54)(15,25,72,51,23,29,68,55,19,33,64,59)(16,30,61,56,24,34,69,60,20,26,65,52), (1,50,10,59,7,56,4,53)(2,55,11,52,8,49,5,58)(3,60,12,57,9,54,6,51)(13,44,22,41,19,38,16,47)(14,37,23,46,20,43,17,40)(15,42,24,39,21,48,18,45)(25,81,34,78,31,75,28,84)(26,74,35,83,32,80,29,77)(27,79,36,76,33,73,30,82)(61,94,70,91,67,88,64,85)(62,87,71,96,68,93,65,90)(63,92,72,89,69,86,66,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,91,79,44,5,87,83,40,9,95,75,48),(2,96,80,37,6,92,84,45,10,88,76,41),(3,89,81,42,7,85,73,38,11,93,77,46),(4,94,82,47,8,90,74,43,12,86,78,39),(13,27,70,53,21,31,66,57,17,35,62,49),(14,32,71,58,22,36,67,50,18,28,63,54),(15,25,72,51,23,29,68,55,19,33,64,59),(16,30,61,56,24,34,69,60,20,26,65,52)], [(1,50,10,59,7,56,4,53),(2,55,11,52,8,49,5,58),(3,60,12,57,9,54,6,51),(13,44,22,41,19,38,16,47),(14,37,23,46,20,43,17,40),(15,42,24,39,21,48,18,45),(25,81,34,78,31,75,28,84),(26,74,35,83,32,80,29,77),(27,79,36,76,33,73,30,82),(61,94,70,91,67,88,64,85),(62,87,71,96,68,93,65,90),(63,92,72,89,69,86,66,95)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I8A8B8C8D8E8F8G8H12A···12H12I12J12K12L12M···12T24A···24H
order1222333444444446···66668888888812···121212121212···1224···24
size1111224111166662···24446666181818182···244446···66···6

60 irreducible representations

dim111111222222222222222444444
type+++++++--+-+++--
imageC1C2C2C2C4C8S3S3D4Q8Dic3D6M4(2)C3⋊C8Dic6D12C3⋊D4C4×S3S3×C8C8⋊S3C4.Dic3S32C3⋊D12C322Q8S3×Dic3S3×C3⋊C8D6.Dic3
kernelC12.81D12C6×C3⋊C8Dic3×C12C2×C324C8C6×Dic3C3×Dic3C2×C3⋊C8C4×Dic3C3×C12C3×C12C2×Dic3C2×C12C3×C6Dic3C12C12C12C2×C6C6C6C6C2×C4C4C4C22C2C2
# reps111148111122244222444111122

Matrix representation of C12.81D12 in GL6(𝔽73)

100000
010000
00464600
0027000
000010
000001
,
22480000
34510000
0072000
001100
0000721
0000720
,
22180000
34510000
0063000
00101000
0000720
0000721

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,27,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,34,0,0,0,0,48,51,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[22,34,0,0,0,0,18,51,0,0,0,0,0,0,63,10,0,0,0,0,0,10,0,0,0,0,0,0,72,72,0,0,0,0,0,1] >;

C12.81D12 in GAP, Magma, Sage, TeX

C_{12}._{81}D_{12}
% in TeX

G:=Group("C12.81D12");
// GroupNames label

G:=SmallGroup(288,219);
// by ID

G=gap.SmallGroup(288,219);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,141,36,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=1,c^2=a^9,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽