Extensions 1→N→G→Q→1 with N=C4×D9 and Q=C22

Direct product G=N×Q with N=C4×D9 and Q=C22
dρLabelID
C22×C4×D9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=C4×D9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×D9)⋊1C22 = D46D18φ: C22/C1C22 ⊆ Out C4×D9724(C4xD9):1C2^2288,358
(C4×D9)⋊2C22 = D48D18φ: C22/C1C22 ⊆ Out C4×D9724+(C4xD9):2C2^2288,363
(C4×D9)⋊3C22 = C2×D4×D9φ: C22/C2C2 ⊆ Out C4×D972(C4xD9):3C2^2288,356
(C4×D9)⋊4C22 = C2×D42D9φ: C22/C2C2 ⊆ Out C4×D9144(C4xD9):4C2^2288,357
(C4×D9)⋊5C22 = C2×Q83D9φ: C22/C2C2 ⊆ Out C4×D9144(C4xD9):5C2^2288,360
(C4×D9)⋊6C22 = C4○D4×D9φ: C22/C2C2 ⊆ Out C4×D9724(C4xD9):6C2^2288,362
(C4×D9)⋊7C22 = C2×D365C2φ: C22/C2C2 ⊆ Out C4×D9144(C4xD9):7C2^2288,355

Non-split extensions G=N.Q with N=C4×D9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×D9).1C22 = D8⋊D9φ: C22/C1C22 ⊆ Out C4×D9724(C4xD9).1C2^2288,121
(C4×D9).2C22 = D72⋊C2φ: C22/C1C22 ⊆ Out C4×D9724+(C4xD9).2C2^2288,124
(C4×D9).3C22 = SD16⋊D9φ: C22/C1C22 ⊆ Out C4×D91444-(C4xD9).3C2^2288,125
(C4×D9).4C22 = Q16⋊D9φ: C22/C1C22 ⊆ Out C4×D91444(C4xD9).4C2^2288,128
(C4×D9).5C22 = Q8.15D18φ: C22/C1C22 ⊆ Out C4×D91444(C4xD9).5C2^2288,361
(C4×D9).6C22 = D4.10D18φ: C22/C1C22 ⊆ Out C4×D91444-(C4xD9).6C2^2288,364
(C4×D9).7C22 = D8×D9φ: C22/C2C2 ⊆ Out C4×D9724+(C4xD9).7C2^2288,120
(C4×D9).8C22 = D83D9φ: C22/C2C2 ⊆ Out C4×D91444-(C4xD9).8C2^2288,122
(C4×D9).9C22 = SD16×D9φ: C22/C2C2 ⊆ Out C4×D9724(C4xD9).9C2^2288,123
(C4×D9).10C22 = SD163D9φ: C22/C2C2 ⊆ Out C4×D91444(C4xD9).10C2^2288,126
(C4×D9).11C22 = Q16×D9φ: C22/C2C2 ⊆ Out C4×D91444-(C4xD9).11C2^2288,127
(C4×D9).12C22 = D725C2φ: C22/C2C2 ⊆ Out C4×D91444+(C4xD9).12C2^2288,129
(C4×D9).13C22 = C2×Q8×D9φ: C22/C2C2 ⊆ Out C4×D9144(C4xD9).13C2^2288,359
(C4×D9).14C22 = C2×C8⋊D9φ: C22/C2C2 ⊆ Out C4×D9144(C4xD9).14C2^2288,111
(C4×D9).15C22 = D36.2C4φ: C22/C2C2 ⊆ Out C4×D91442(C4xD9).15C2^2288,112
(C4×D9).16C22 = D36.C4φ: C22/C2C2 ⊆ Out C4×D91444(C4xD9).16C2^2288,117
(C4×D9).17C22 = C2×C8×D9φ: trivial image144(C4xD9).17C2^2288,110
(C4×D9).18C22 = M4(2)×D9φ: trivial image724(C4xD9).18C2^2288,116

׿
×
𝔽