direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×D9, C36⋊2C2, D18.C2, C4○Dic9, C6.7D6, C12.5S3, C2.1D18, Dic9⋊2C2, C18.2C22, C9⋊1(C2×C4), C3.(C4×S3), SmallGroup(72,5)
Series: Derived ►Chief ►Lower central ►Upper central
C9 — C4×D9 |
Generators and relations for C4×D9
G = < a,b,c | a4=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C4×D9
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 9A | 9B | 9C | 12A | 12B | 18A | 18B | 18C | 36A | 36B | 36C | 36D | 36E | 36F | |
size | 1 | 1 | 9 | 9 | 2 | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -i | -i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | i | i | -i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ13 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ17 | 2 | -2 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | -2 | -1 | -1 | -1 | -2i | 2i | 1 | 1 | 1 | i | i | -i | -i | -i | i | complex lifted from C4×S3 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | -2 | -1 | -1 | -1 | 2i | -2i | 1 | 1 | 1 | -i | -i | i | i | i | -i | complex lifted from C4×S3 |
ρ19 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | i | -i | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ43ζ97+ζ43ζ92 | ζ43ζ95+ζ43ζ94 | ζ4ζ95+ζ4ζ94 | ζ4ζ98+ζ4ζ9 | ζ4ζ97+ζ4ζ92 | ζ43ζ98+ζ43ζ9 | complex faithful |
ρ20 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | i | -i | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ43ζ98+ζ43ζ9 | ζ43ζ97+ζ43ζ92 | ζ4ζ97+ζ4ζ92 | ζ4ζ95+ζ4ζ94 | ζ4ζ98+ζ4ζ9 | ζ43ζ95+ζ43ζ94 | complex faithful |
ρ21 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -i | i | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ4ζ95+ζ4ζ94 | ζ4ζ98+ζ4ζ9 | ζ43ζ98+ζ43ζ9 | ζ43ζ97+ζ43ζ92 | ζ43ζ95+ζ43ζ94 | ζ4ζ97+ζ4ζ92 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -i | i | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ4ζ97+ζ4ζ92 | ζ4ζ95+ζ4ζ94 | ζ43ζ95+ζ43ζ94 | ζ43ζ98+ζ43ζ9 | ζ43ζ97+ζ43ζ92 | ζ4ζ98+ζ4ζ9 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -i | i | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ4ζ98+ζ4ζ9 | ζ4ζ97+ζ4ζ92 | ζ43ζ97+ζ43ζ92 | ζ43ζ95+ζ43ζ94 | ζ43ζ98+ζ43ζ9 | ζ4ζ95+ζ4ζ94 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | i | -i | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ43ζ95+ζ43ζ94 | ζ43ζ98+ζ43ζ9 | ζ4ζ98+ζ4ζ9 | ζ4ζ97+ζ4ζ92 | ζ4ζ95+ζ4ζ94 | ζ43ζ97+ζ43ζ92 | complex faithful |
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)
G:=sub<Sym(36)| (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)>;
G:=Group( (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36) );
G=PermutationGroup([[(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36)]])
C4×D9 is a maximal subgroup of
C8⋊D9 D36⋊5C2 D4⋊2D9 Q8⋊3D9 C18.D6 C12.11S4 D90.C2
C4×D9 is a maximal quotient of C8⋊D9 Dic9⋊C4 D18⋊C4 C18.D6 D90.C2
Matrix representation of C4×D9 ►in GL2(𝔽17) generated by
13 | 0 |
0 | 13 |
0 | 4 |
4 | 14 |
3 | 15 |
4 | 14 |
G:=sub<GL(2,GF(17))| [13,0,0,13],[0,4,4,14],[3,4,15,14] >;
C4×D9 in GAP, Magma, Sage, TeX
C_4\times D_9
% in TeX
G:=Group("C4xD9");
// GroupNames label
G:=SmallGroup(72,5);
// by ID
G=gap.SmallGroup(72,5);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,26,803,138,1204]);
// Polycyclic
G:=Group<a,b,c|a^4=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C4×D9 in TeX
Character table of C4×D9 in TeX