Extensions 1→N→G→Q→1 with N=C8 and Q=C3×Dic3

Direct product G=N×Q with N=C8 and Q=C3×Dic3
dρLabelID
Dic3×C2496Dic3xC24288,247

Semidirect products G=N:Q with N=C8 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C81(C3×Dic3) = C3×C241C4φ: C3×Dic3/C3×C6C2 ⊆ Aut C896C8:1(C3xDic3)288,252
C82(C3×Dic3) = C3×C8⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C896C8:2(C3xDic3)288,251
C83(C3×Dic3) = C3×C24⋊C4φ: C3×Dic3/C3×C6C2 ⊆ Aut C896C8:3(C3xDic3)288,249

Non-split extensions G=N.Q with N=C8 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C8.1(C3×Dic3) = C3×C24.C4φ: C3×Dic3/C3×C6C2 ⊆ Aut C8482C8.1(C3xDic3)288,253
C8.2(C3×Dic3) = C3×C12.C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C8482C8.2(C3xDic3)288,246
C8.3(C3×Dic3) = C3×C3⋊C32central extension (φ=1)962C8.3(C3xDic3)288,64
C8.4(C3×Dic3) = C6×C3⋊C16central extension (φ=1)96C8.4(C3xDic3)288,245

׿
×
𝔽