Extensions 1→N→G→Q→1 with N=C2xC8 and Q=C3xS3

Direct product G=NxQ with N=C2xC8 and Q=C3xS3
dρLabelID
S3xC2xC2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C2xC8 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC8):1(C3xS3) = C3xD6:C8φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8):1(C3xS3)288,254
(C2xC8):2(C3xS3) = C3xC2.D24φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8):2(C3xS3)288,255
(C2xC8):3(C3xS3) = C6xD24φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8):3(C3xS3)288,674
(C2xC8):4(C3xS3) = C3xC4oD24φ: C3xS3/C32C2 ⊆ Aut C2xC8482(C2xC8):4(C3xS3)288,675
(C2xC8):5(C3xS3) = C6xC24:C2φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8):5(C3xS3)288,673
(C2xC8):6(C3xS3) = C6xC8:S3φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8):6(C3xS3)288,671
(C2xC8):7(C3xS3) = C3xC8oD12φ: C3xS3/C32C2 ⊆ Aut C2xC8482(C2xC8):7(C3xS3)288,672

Non-split extensions G=N.Q with N=C2xC8 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC8).1(C3xS3) = C3xDic3:C8φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).1(C3xS3)288,248
(C2xC8).2(C3xS3) = C3xC2.Dic12φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).2(C3xS3)288,250
(C2xC8).3(C3xS3) = C3xC24:1C4φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).3(C3xS3)288,252
(C2xC8).4(C3xS3) = C6xDic12φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).4(C3xS3)288,676
(C2xC8).5(C3xS3) = C3xC24.C4φ: C3xS3/C32C2 ⊆ Aut C2xC8482(C2xC8).5(C3xS3)288,253
(C2xC8).6(C3xS3) = C3xC8:Dic3φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).6(C3xS3)288,251
(C2xC8).7(C3xS3) = C3xC12.C8φ: C3xS3/C32C2 ⊆ Aut C2xC8482(C2xC8).7(C3xS3)288,246
(C2xC8).8(C3xS3) = C3xC24:C4φ: C3xS3/C32C2 ⊆ Aut C2xC896(C2xC8).8(C3xS3)288,249
(C2xC8).9(C3xS3) = C6xC3:C16central extension (φ=1)96(C2xC8).9(C3xS3)288,245
(C2xC8).10(C3xS3) = Dic3xC24central extension (φ=1)96(C2xC8).10(C3xS3)288,247

׿
x
:
Z
F
o
wr
Q
<