Extensions 1→N→G→Q→1 with N=C18 and Q=M4(2)

Direct product G=N×Q with N=C18 and Q=M4(2)

Semidirect products G=N:Q with N=C18 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C181M4(2) = C2×C8⋊D9φ: M4(2)/C8C2 ⊆ Aut C18144C18:1M4(2)288,111
C182M4(2) = C2×C4.Dic9φ: M4(2)/C2×C4C2 ⊆ Aut C18144C18:2M4(2)288,131

Non-split extensions G=N.Q with N=C18 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C18.1M4(2) = Dic9⋊C8φ: M4(2)/C8C2 ⊆ Aut C18288C18.1M4(2)288,22
C18.2M4(2) = C72⋊C4φ: M4(2)/C8C2 ⊆ Aut C18288C18.2M4(2)288,23
C18.3M4(2) = D18⋊C8φ: M4(2)/C8C2 ⊆ Aut C18144C18.3M4(2)288,27
C18.4M4(2) = C42.D9φ: M4(2)/C2×C4C2 ⊆ Aut C18288C18.4M4(2)288,10
C18.5M4(2) = C36⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C18288C18.5M4(2)288,11
C18.6M4(2) = C36.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C18144C18.6M4(2)288,37
C18.7M4(2) = C9×C8⋊C4central extension (φ=1)288C18.7M4(2)288,47
C18.8M4(2) = C9×C22⋊C8central extension (φ=1)144C18.8M4(2)288,48
C18.9M4(2) = C9×C4⋊C8central extension (φ=1)288C18.9M4(2)288,55