Copied to
clipboard

G = D18⋊C8order 288 = 25·32

The semidirect product of D18 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D18⋊C8, C36.35D4, C4.19D36, C12.54D12, C18.3M4(2), (C2×C8)⋊1D9, (C2×C72)⋊1C2, C3.(D6⋊C8), C2.5(C8×D9), C6.10(S3×C8), C91(C22⋊C8), C18.5(C2×C8), (C2×C24).3S3, (C2×C4).93D18, C6.6(C8⋊S3), C2.1(D18⋊C4), C6.13(D6⋊C4), (C2×C12).407D6, C2.3(C8⋊D9), C4.27(C9⋊D4), (C2×Dic9).4C4, (C22×D9).2C4, C22.11(C4×D9), C18.6(C22⋊C4), C12.122(C3⋊D4), (C2×C36).105C22, (C2×C9⋊C8)⋊9C2, (C2×C4×D9).6C2, (C2×C6).37(C4×S3), (C2×C18).12(C2×C4), SmallGroup(288,27)

Series: Derived Chief Lower central Upper central

C1C18 — D18⋊C8
C1C3C9C18C36C2×C36C2×C4×D9 — D18⋊C8
C9C18 — D18⋊C8
C1C2×C4C2×C8

Generators and relations for D18⋊C8
 G = < a,b,c | a18=b2=c8=1, bab=a-1, ac=ca, cbc-1=a9b >

Subgroups: 332 in 75 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, C9, Dic3, C12, D6, C2×C6, C2×C8, C2×C8, C22×C4, D9, C18, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C22⋊C8, Dic9, C36, D18, D18, C2×C18, C2×C3⋊C8, C2×C24, S3×C2×C4, C9⋊C8, C72, C4×D9, C2×Dic9, C2×C36, C22×D9, D6⋊C8, C2×C9⋊C8, C2×C72, C2×C4×D9, D18⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C22⋊C4, C2×C8, M4(2), D9, C4×S3, D12, C3⋊D4, C22⋊C8, D18, S3×C8, C8⋊S3, D6⋊C4, C4×D9, D36, C9⋊D4, D6⋊C8, C8×D9, C8⋊D9, D18⋊C4, D18⋊C8

Smallest permutation representation of D18⋊C8
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 43)(2 42)(3 41)(4 40)(5 39)(6 38)(7 37)(8 54)(9 53)(10 52)(11 51)(12 50)(13 49)(14 48)(15 47)(16 46)(17 45)(18 44)(19 83)(20 82)(21 81)(22 80)(23 79)(24 78)(25 77)(26 76)(27 75)(28 74)(29 73)(30 90)(31 89)(32 88)(33 87)(34 86)(35 85)(36 84)(55 91)(56 108)(57 107)(58 106)(59 105)(60 104)(61 103)(62 102)(63 101)(64 100)(65 99)(66 98)(67 97)(68 96)(69 95)(70 94)(71 93)(72 92)(109 127)(110 144)(111 143)(112 142)(113 141)(114 140)(115 139)(116 138)(117 137)(118 136)(119 135)(120 134)(121 133)(122 132)(123 131)(124 130)(125 129)(126 128)
(1 84 57 111 44 28 108 135)(2 85 58 112 45 29 91 136)(3 86 59 113 46 30 92 137)(4 87 60 114 47 31 93 138)(5 88 61 115 48 32 94 139)(6 89 62 116 49 33 95 140)(7 90 63 117 50 34 96 141)(8 73 64 118 51 35 97 142)(9 74 65 119 52 36 98 143)(10 75 66 120 53 19 99 144)(11 76 67 121 54 20 100 127)(12 77 68 122 37 21 101 128)(13 78 69 123 38 22 102 129)(14 79 70 124 39 23 103 130)(15 80 71 125 40 24 104 131)(16 81 72 126 41 25 105 132)(17 82 55 109 42 26 106 133)(18 83 56 110 43 27 107 134)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,83)(20,82)(21,81)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,84)(55,91)(56,108)(57,107)(58,106)(59,105)(60,104)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(109,127)(110,144)(111,143)(112,142)(113,141)(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,134)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128), (1,84,57,111,44,28,108,135)(2,85,58,112,45,29,91,136)(3,86,59,113,46,30,92,137)(4,87,60,114,47,31,93,138)(5,88,61,115,48,32,94,139)(6,89,62,116,49,33,95,140)(7,90,63,117,50,34,96,141)(8,73,64,118,51,35,97,142)(9,74,65,119,52,36,98,143)(10,75,66,120,53,19,99,144)(11,76,67,121,54,20,100,127)(12,77,68,122,37,21,101,128)(13,78,69,123,38,22,102,129)(14,79,70,124,39,23,103,130)(15,80,71,125,40,24,104,131)(16,81,72,126,41,25,105,132)(17,82,55,109,42,26,106,133)(18,83,56,110,43,27,107,134)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,83)(20,82)(21,81)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,84)(55,91)(56,108)(57,107)(58,106)(59,105)(60,104)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(109,127)(110,144)(111,143)(112,142)(113,141)(114,140)(115,139)(116,138)(117,137)(118,136)(119,135)(120,134)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128), (1,84,57,111,44,28,108,135)(2,85,58,112,45,29,91,136)(3,86,59,113,46,30,92,137)(4,87,60,114,47,31,93,138)(5,88,61,115,48,32,94,139)(6,89,62,116,49,33,95,140)(7,90,63,117,50,34,96,141)(8,73,64,118,51,35,97,142)(9,74,65,119,52,36,98,143)(10,75,66,120,53,19,99,144)(11,76,67,121,54,20,100,127)(12,77,68,122,37,21,101,128)(13,78,69,123,38,22,102,129)(14,79,70,124,39,23,103,130)(15,80,71,125,40,24,104,131)(16,81,72,126,41,25,105,132)(17,82,55,109,42,26,106,133)(18,83,56,110,43,27,107,134) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,43),(2,42),(3,41),(4,40),(5,39),(6,38),(7,37),(8,54),(9,53),(10,52),(11,51),(12,50),(13,49),(14,48),(15,47),(16,46),(17,45),(18,44),(19,83),(20,82),(21,81),(22,80),(23,79),(24,78),(25,77),(26,76),(27,75),(28,74),(29,73),(30,90),(31,89),(32,88),(33,87),(34,86),(35,85),(36,84),(55,91),(56,108),(57,107),(58,106),(59,105),(60,104),(61,103),(62,102),(63,101),(64,100),(65,99),(66,98),(67,97),(68,96),(69,95),(70,94),(71,93),(72,92),(109,127),(110,144),(111,143),(112,142),(113,141),(114,140),(115,139),(116,138),(117,137),(118,136),(119,135),(120,134),(121,133),(122,132),(123,131),(124,130),(125,129),(126,128)], [(1,84,57,111,44,28,108,135),(2,85,58,112,45,29,91,136),(3,86,59,113,46,30,92,137),(4,87,60,114,47,31,93,138),(5,88,61,115,48,32,94,139),(6,89,62,116,49,33,95,140),(7,90,63,117,50,34,96,141),(8,73,64,118,51,35,97,142),(9,74,65,119,52,36,98,143),(10,75,66,120,53,19,99,144),(11,76,67,121,54,20,100,127),(12,77,68,122,37,21,101,128),(13,78,69,123,38,22,102,129),(14,79,70,124,39,23,103,130),(15,80,71,125,40,24,104,131),(16,81,72,126,41,25,105,132),(17,82,55,109,42,26,106,133),(18,83,56,110,43,27,107,134)]])

84 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C8A8B8C8D8E8F8G8H9A9B9C12A12B12C12D18A···18I24A···24H36A···36L72A···72X
order1222223444444666888888889991212121218···1824···2436···3672···72
size1111181821111181822222221818181822222222···22···22···22···2

84 irreducible representations

dim11111112222222222222222
type+++++++++++
imageC1C2C2C2C4C4C8S3D4D6M4(2)D9D12C3⋊D4C4×S3D18S3×C8C8⋊S3D36C9⋊D4C4×D9C8×D9C8⋊D9
kernelD18⋊C8C2×C9⋊C8C2×C72C2×C4×D9C2×Dic9C22×D9D18C2×C24C36C2×C12C18C2×C8C12C12C2×C6C2×C4C6C6C4C4C22C2C2
# reps1111228121232223446661212

Matrix representation of D18⋊C8 in GL3(𝔽73) generated by

100
0328
04531
,
100
02842
07045
,
1000
06516
0578
G:=sub<GL(3,GF(73))| [1,0,0,0,3,45,0,28,31],[1,0,0,0,28,70,0,42,45],[10,0,0,0,65,57,0,16,8] >;

D18⋊C8 in GAP, Magma, Sage, TeX

D_{18}\rtimes C_8
% in TeX

G:=Group("D18:C8");
// GroupNames label

G:=SmallGroup(288,27);
// by ID

G=gap.SmallGroup(288,27);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,100,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^18=b^2=c^8=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^9*b>;
// generators/relations

׿
×
𝔽