Copied to
clipboard

G = C2×C4.Dic9order 288 = 25·32

Direct product of C2 and C4.Dic9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.Dic9, C182M4(2), C36.41C23, C23.4Dic9, C9⋊C812C22, (C2×C36).9C4, C93(C2×M4(2)), C36.38(C2×C4), (C2×C4).84D18, (C2×C4).6Dic9, (C22×C4).6D9, (C2×C12).395D6, (C22×C36).9C2, (C22×C18).7C4, C4.14(C2×Dic9), C4.41(C22×D9), (C22×C12).26S3, (C2×C36).98C22, C18.22(C22×C4), (C2×C12).14Dic3, C12.54(C2×Dic3), C6.7(C4.Dic3), C2.3(C22×Dic9), C12.202(C22×S3), C6.22(C22×Dic3), C22.12(C2×Dic9), (C22×C6).13Dic3, (C2×C9⋊C8)⋊12C2, C3.(C2×C4.Dic3), (C2×C18).33(C2×C4), (C2×C6).37(C2×Dic3), SmallGroup(288,131)

Series: Derived Chief Lower central Upper central

C1C18 — C2×C4.Dic9
C1C3C9C18C36C9⋊C8C2×C9⋊C8 — C2×C4.Dic9
C9C18 — C2×C4.Dic9
C1C2×C4C22×C4

Generators and relations for C2×C4.Dic9
 G = < a,b,c,d | a2=b4=1, c18=b2, d2=c9, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c17 >

Subgroups: 224 in 102 conjugacy classes, 68 normal (28 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C23, C9, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C18, C18, C18, C3⋊C8, C2×C12, C2×C12, C22×C6, C2×M4(2), C36, C36, C2×C18, C2×C18, C2×C18, C2×C3⋊C8, C4.Dic3, C22×C12, C9⋊C8, C2×C36, C2×C36, C22×C18, C2×C4.Dic3, C2×C9⋊C8, C4.Dic9, C22×C36, C2×C4.Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, M4(2), C22×C4, D9, C2×Dic3, C22×S3, C2×M4(2), Dic9, D18, C4.Dic3, C22×Dic3, C2×Dic9, C22×D9, C2×C4.Dic3, C4.Dic9, C22×Dic9, C2×C4.Dic9

Smallest permutation representation of C2×C4.Dic9
On 144 points
Generators in S144
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 37)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(73 112)(74 113)(75 114)(76 115)(77 116)(78 117)(79 118)(80 119)(81 120)(82 121)(83 122)(84 123)(85 124)(86 125)(87 126)(88 127)(89 128)(90 129)(91 130)(92 131)(93 132)(94 133)(95 134)(96 135)(97 136)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 144)(106 109)(107 110)(108 111)
(1 10 19 28)(2 11 20 29)(3 12 21 30)(4 13 22 31)(5 14 23 32)(6 15 24 33)(7 16 25 34)(8 17 26 35)(9 18 27 36)(37 46 55 64)(38 47 56 65)(39 48 57 66)(40 49 58 67)(41 50 59 68)(42 51 60 69)(43 52 61 70)(44 53 62 71)(45 54 63 72)(73 100 91 82)(74 101 92 83)(75 102 93 84)(76 103 94 85)(77 104 95 86)(78 105 96 87)(79 106 97 88)(80 107 98 89)(81 108 99 90)(109 136 127 118)(110 137 128 119)(111 138 129 120)(112 139 130 121)(113 140 131 122)(114 141 132 123)(115 142 133 124)(116 143 134 125)(117 144 135 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 129 10 138 19 111 28 120)(2 110 11 119 20 128 29 137)(3 127 12 136 21 109 30 118)(4 144 13 117 22 126 31 135)(5 125 14 134 23 143 32 116)(6 142 15 115 24 124 33 133)(7 123 16 132 25 141 34 114)(8 140 17 113 26 122 35 131)(9 121 18 130 27 139 36 112)(37 85 46 94 55 103 64 76)(38 102 47 75 56 84 65 93)(39 83 48 92 57 101 66 74)(40 100 49 73 58 82 67 91)(41 81 50 90 59 99 68 108)(42 98 51 107 60 80 69 89)(43 79 52 88 61 97 70 106)(44 96 53 105 62 78 71 87)(45 77 54 86 63 95 72 104)

G:=sub<Sym(144)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,120)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,127)(89,128)(90,129)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,109)(107,110)(108,111), (1,10,19,28)(2,11,20,29)(3,12,21,30)(4,13,22,31)(5,14,23,32)(6,15,24,33)(7,16,25,34)(8,17,26,35)(9,18,27,36)(37,46,55,64)(38,47,56,65)(39,48,57,66)(40,49,58,67)(41,50,59,68)(42,51,60,69)(43,52,61,70)(44,53,62,71)(45,54,63,72)(73,100,91,82)(74,101,92,83)(75,102,93,84)(76,103,94,85)(77,104,95,86)(78,105,96,87)(79,106,97,88)(80,107,98,89)(81,108,99,90)(109,136,127,118)(110,137,128,119)(111,138,129,120)(112,139,130,121)(113,140,131,122)(114,141,132,123)(115,142,133,124)(116,143,134,125)(117,144,135,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,129,10,138,19,111,28,120)(2,110,11,119,20,128,29,137)(3,127,12,136,21,109,30,118)(4,144,13,117,22,126,31,135)(5,125,14,134,23,143,32,116)(6,142,15,115,24,124,33,133)(7,123,16,132,25,141,34,114)(8,140,17,113,26,122,35,131)(9,121,18,130,27,139,36,112)(37,85,46,94,55,103,64,76)(38,102,47,75,56,84,65,93)(39,83,48,92,57,101,66,74)(40,100,49,73,58,82,67,91)(41,81,50,90,59,99,68,108)(42,98,51,107,60,80,69,89)(43,79,52,88,61,97,70,106)(44,96,53,105,62,78,71,87)(45,77,54,86,63,95,72,104)>;

G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,120)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,127)(89,128)(90,129)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,109)(107,110)(108,111), (1,10,19,28)(2,11,20,29)(3,12,21,30)(4,13,22,31)(5,14,23,32)(6,15,24,33)(7,16,25,34)(8,17,26,35)(9,18,27,36)(37,46,55,64)(38,47,56,65)(39,48,57,66)(40,49,58,67)(41,50,59,68)(42,51,60,69)(43,52,61,70)(44,53,62,71)(45,54,63,72)(73,100,91,82)(74,101,92,83)(75,102,93,84)(76,103,94,85)(77,104,95,86)(78,105,96,87)(79,106,97,88)(80,107,98,89)(81,108,99,90)(109,136,127,118)(110,137,128,119)(111,138,129,120)(112,139,130,121)(113,140,131,122)(114,141,132,123)(115,142,133,124)(116,143,134,125)(117,144,135,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,129,10,138,19,111,28,120)(2,110,11,119,20,128,29,137)(3,127,12,136,21,109,30,118)(4,144,13,117,22,126,31,135)(5,125,14,134,23,143,32,116)(6,142,15,115,24,124,33,133)(7,123,16,132,25,141,34,114)(8,140,17,113,26,122,35,131)(9,121,18,130,27,139,36,112)(37,85,46,94,55,103,64,76)(38,102,47,75,56,84,65,93)(39,83,48,92,57,101,66,74)(40,100,49,73,58,82,67,91)(41,81,50,90,59,99,68,108)(42,98,51,107,60,80,69,89)(43,79,52,88,61,97,70,106)(44,96,53,105,62,78,71,87)(45,77,54,86,63,95,72,104) );

G=PermutationGroup([[(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,37),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(73,112),(74,113),(75,114),(76,115),(77,116),(78,117),(79,118),(80,119),(81,120),(82,121),(83,122),(84,123),(85,124),(86,125),(87,126),(88,127),(89,128),(90,129),(91,130),(92,131),(93,132),(94,133),(95,134),(96,135),(97,136),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,144),(106,109),(107,110),(108,111)], [(1,10,19,28),(2,11,20,29),(3,12,21,30),(4,13,22,31),(5,14,23,32),(6,15,24,33),(7,16,25,34),(8,17,26,35),(9,18,27,36),(37,46,55,64),(38,47,56,65),(39,48,57,66),(40,49,58,67),(41,50,59,68),(42,51,60,69),(43,52,61,70),(44,53,62,71),(45,54,63,72),(73,100,91,82),(74,101,92,83),(75,102,93,84),(76,103,94,85),(77,104,95,86),(78,105,96,87),(79,106,97,88),(80,107,98,89),(81,108,99,90),(109,136,127,118),(110,137,128,119),(111,138,129,120),(112,139,130,121),(113,140,131,122),(114,141,132,123),(115,142,133,124),(116,143,134,125),(117,144,135,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,129,10,138,19,111,28,120),(2,110,11,119,20,128,29,137),(3,127,12,136,21,109,30,118),(4,144,13,117,22,126,31,135),(5,125,14,134,23,143,32,116),(6,142,15,115,24,124,33,133),(7,123,16,132,25,141,34,114),(8,140,17,113,26,122,35,131),(9,121,18,130,27,139,36,112),(37,85,46,94,55,103,64,76),(38,102,47,75,56,84,65,93),(39,83,48,92,57,101,66,74),(40,100,49,73,58,82,67,91),(41,81,50,90,59,99,68,108),(42,98,51,107,60,80,69,89),(43,79,52,88,61,97,70,106),(44,96,53,105,62,78,71,87),(45,77,54,86,63,95,72,104)]])

84 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A···6G8A···8H9A9B9C12A···12H18A···18U36A···36X
order12222234444446···68···899912···1218···1836···36
size11112221111222···218···182222···22···22···2

84 irreducible representations

dim11111122222222222
type+++++-+-+-+-
imageC1C2C2C2C4C4S3Dic3D6Dic3M4(2)D9Dic9D18Dic9C4.Dic3C4.Dic9
kernelC2×C4.Dic9C2×C9⋊C8C4.Dic9C22×C36C2×C36C22×C18C22×C12C2×C12C2×C12C22×C6C18C22×C4C2×C4C2×C4C23C6C2
# reps124162133143993824

Matrix representation of C2×C4.Dic9 in GL3(𝔽73) generated by

7200
0720
0072
,
7200
0279
0046
,
100
06172
0067
,
7200
04833
0425
G:=sub<GL(3,GF(73))| [72,0,0,0,72,0,0,0,72],[72,0,0,0,27,0,0,9,46],[1,0,0,0,61,0,0,72,67],[72,0,0,0,48,4,0,33,25] >;

C2×C4.Dic9 in GAP, Magma, Sage, TeX

C_2\times C_4.{\rm Dic}_9
% in TeX

G:=Group("C2xC4.Dic9");
// GroupNames label

G:=SmallGroup(288,131);
// by ID

G=gap.SmallGroup(288,131);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,422,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=1,c^18=b^2,d^2=c^9,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^17>;
// generators/relations

׿
×
𝔽