Extensions 1→N→G→Q→1 with N=C3×D4⋊S3 and Q=C2

Direct product G=N×Q with N=C3×D4⋊S3 and Q=C2
dρLabelID
C6×D4⋊S348C6xD4:S3288,702

Semidirect products G=N:Q with N=C3×D4⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4⋊S3)⋊1C2 = S3×D4⋊S3φ: C2/C1C2 ⊆ Out C3×D4⋊S3488+(C3xD4:S3):1C2288,572
(C3×D4⋊S3)⋊2C2 = D12⋊D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3248+(C3xD4:S3):2C2288,574
(C3×D4⋊S3)⋊3C2 = D12.22D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3488-(C3xD4:S3):3C2288,581
(C3×D4⋊S3)⋊4C2 = D12.8D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3488-(C3xD4:S3):4C2288,584
(C3×D4⋊S3)⋊5C2 = Dic63D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3488+(C3xD4:S3):5C2288,573
(C3×D4⋊S3)⋊6C2 = D12.D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3488-(C3xD4:S3):6C2288,575
(C3×D4⋊S3)⋊7C2 = D129D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3488-(C3xD4:S3):7C2288,580
(C3×D4⋊S3)⋊8C2 = D125D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3248+(C3xD4:S3):8C2288,585
(C3×D4⋊S3)⋊9C2 = C3×S3×D8φ: C2/C1C2 ⊆ Out C3×D4⋊S3484(C3xD4:S3):9C2288,681
(C3×D4⋊S3)⋊10C2 = C3×Q8.7D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3484(C3xD4:S3):10C2288,687
(C3×D4⋊S3)⋊11C2 = C3×D8⋊S3φ: C2/C1C2 ⊆ Out C3×D4⋊S3484(C3xD4:S3):11C2288,682
(C3×D4⋊S3)⋊12C2 = C3×Q83D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3484(C3xD4:S3):12C2288,685
(C3×D4⋊S3)⋊13C2 = C3×D126C22φ: C2/C1C2 ⊆ Out C3×D4⋊S3244(C3xD4:S3):13C2288,703
(C3×D4⋊S3)⋊14C2 = C3×D4⋊D6φ: C2/C1C2 ⊆ Out C3×D4⋊S3484(C3xD4:S3):14C2288,720
(C3×D4⋊S3)⋊15C2 = C3×Q8.13D6φ: trivial image484(C3xD4:S3):15C2288,721


׿
×
𝔽