Copied to
clipboard

G = C3xQ8.13D6order 288 = 25·32

Direct product of C3 and Q8.13D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xQ8.13D6, C62.67D4, D4:S3:7C6, C4oD12:4C6, D4.S3:7C6, D4.8(S3xC6), C3:Q16:7C6, C6.60(C6xD4), Q8:2S3:7C6, (C3xD4).48D6, C12.66(C3xD4), (C3xQ8).73D6, Q8.18(S3xC6), D12.12(C2xC6), (C2xC12).333D6, (C3xC12).174D4, C32:24(C4oD8), (C3xC12).89C23, C12.18(C22xC6), Dic6.11(C2xC6), C12.149(C3:D4), C12.169(C22xS3), (C6xC12).132C22, (C3xD12).41C22, (C3xDic6).41C22, (D4xC32).24C22, (Q8xC32).25C22, (C2xC3:C8):8C6, (C6xC3:C8):14C2, C3:5(C3xC4oD8), C4.18(S3xC2xC6), C4oD4:6(C3xS3), (C3xC4oD4):6C6, C3:C8.10(C2xC6), (C3xD4:S3):15C2, (C3xC4oD4):11S3, (C3xC4oD12):8C2, (C2xC4).59(S3xC6), (C3xD4).8(C2xC6), (C2xC6).10(C3xD4), C4.32(C3xC3:D4), C2.24(C6xC3:D4), (C2xC12).43(C2xC6), (C3xD4.S3):15C2, (C3xC3:Q16):15C2, (C3xC6).268(C2xD4), (C32xC4oD4):2C2, C6.161(C2xC3:D4), (C3xC3:C8).41C22, (C3xQ8).20(C2xC6), C22.1(C3xC3:D4), (C3xQ8:2S3):15C2, (C2xC6).29(C3:D4), SmallGroup(288,721)

Series: Derived Chief Lower central Upper central

C1C12 — C3xQ8.13D6
C1C3C6C12C3xC12C3xD12C3xC4oD12 — C3xQ8.13D6
C3C6C12 — C3xQ8.13D6
C1C12C2xC12C3xC4oD4

Generators and relations for C3xQ8.13D6
 G = < a,b,c,d,e | a3=b4=1, c2=d6=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, cd=dc, ece-1=b-1c, ede-1=d5 >

Subgroups: 322 in 144 conjugacy classes, 58 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC8, D8, SD16, Q16, C4oD4, C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C4oD8, C3xDic3, C3xC12, C3xC12, S3xC6, C62, C62, C2xC3:C8, D4:S3, D4.S3, Q8:2S3, C3:Q16, C2xC24, C3xD8, C3xSD16, C3xQ16, C4oD12, C3xC4oD4, C3xC4oD4, C3xC3:C8, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C6xC12, C6xC12, D4xC32, D4xC32, Q8xC32, Q8.13D6, C3xC4oD8, C6xC3:C8, C3xD4:S3, C3xD4.S3, C3xQ8:2S3, C3xC3:Q16, C3xC4oD12, C32xC4oD4, C3xQ8.13D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, C4oD8, S3xC6, C2xC3:D4, C6xD4, C3xC3:D4, S3xC2xC6, Q8.13D6, C3xC4oD8, C6xC3:D4, C3xQ8.13D6

Smallest permutation representation of C3xQ8.13D6
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 4 7 10)(2 5 8 11)(3 6 9 12)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)
(1 14 7 20)(2 15 8 21)(3 16 9 22)(4 17 10 23)(5 18 11 24)(6 19 12 13)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 37 34 43)(29 38 35 44)(30 39 36 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 7 27)(2 26 8 32)(3 31 9 25)(4 36 10 30)(5 29 11 35)(6 34 12 28)(13 40 19 46)(14 45 20 39)(15 38 21 44)(16 43 22 37)(17 48 23 42)(18 41 24 47)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,14,7,20)(2,15,8,21)(3,16,9,22)(4,17,10,23)(5,18,11,24)(6,19,12,13)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,40,19,46)(14,45,20,39)(15,38,21,44)(16,43,22,37)(17,48,23,42)(18,41,24,47)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,14,7,20)(2,15,8,21)(3,16,9,22)(4,17,10,23)(5,18,11,24)(6,19,12,13)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,40,19,46)(14,45,20,39)(15,38,21,44)(16,43,22,37)(17,48,23,42)(18,41,24,47) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48)], [(1,14,7,20),(2,15,8,21),(3,16,9,22),(4,17,10,23),(5,18,11,24),(6,19,12,13),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,37,34,43),(29,38,35,44),(30,39,36,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,7,27),(2,26,8,32),(3,31,9,25),(4,36,10,30),(5,29,11,35),(6,34,12,28),(13,40,19,46),(14,45,20,39),(15,38,21,44),(16,43,22,37),(17,48,23,42),(18,41,24,47)]])

72 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C···6G6H···6R6S6T8A8B8C8D12A12B12C12D12E···12L12M···12W12X12Y24A···24H
order122223333344444666···66···66688881212121212···1212···12121224···24
size11241211222112412112···24···41212666611112···24···412126···6

72 irreducible representations

dim111111111111111122222222222222222244
type++++++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6S3D4D4D6D6D6C3xS3C3:D4C3xD4C3:D4C3xD4C4oD8S3xC6S3xC6S3xC6C3xC3:D4C3xC3:D4C3xC4oD8Q8.13D6C3xQ8.13D6
kernelC3xQ8.13D6C6xC3:C8C3xD4:S3C3xD4.S3C3xQ8:2S3C3xC3:Q16C3xC4oD12C32xC4oD4Q8.13D6C2xC3:C8D4:S3D4.S3Q8:2S3C3:Q16C4oD12C3xC4oD4C3xC4oD4C3xC12C62C2xC12C3xD4C3xQ8C4oD4C12C12C2xC6C2xC6C32C2xC4D4Q8C4C22C3C3C1
# reps111111112222222211111122222422244824

Matrix representation of C3xQ8.13D6 in GL4(F73) generated by

64000
06400
0010
0001
,
1000
0100
00270
00046
,
1000
0100
0001
00720
,
8000
06400
00270
00027
,
06400
8000
00063
00220
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,27,0,0,0,0,46],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,0],[8,0,0,0,0,64,0,0,0,0,27,0,0,0,0,27],[0,8,0,0,64,0,0,0,0,0,0,22,0,0,63,0] >;

C3xQ8.13D6 in GAP, Magma, Sage, TeX

C_3\times Q_8._{13}D_6
% in TeX

G:=Group("C3xQ8.13D6");
// GroupNames label

G:=SmallGroup(288,721);
// by ID

G=gap.SmallGroup(288,721);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,2524,648,102,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=1,c^2=d^6=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<