Copied to
clipboard

G = C3×D4⋊D6order 288 = 25·32

Direct product of C3 and D4⋊D6

direct product, metabelian, supersoluble, monomial

Aliases: C3×D4⋊D6, C62.66D4, D4⋊S36C6, D44(S3×C6), Q86(S3×C6), (C3×D4)⋊22D6, (C3×Q8)⋊23D6, C6.59(C6×D4), (C2×D12)⋊10C6, (C6×D12)⋊12C2, Q82S36C6, C12.58(C3×D4), C4.Dic39C6, D12.11(C2×C6), (C3×C12).160D4, (C2×C12).247D6, C3224(C8⋊C22), (C3×C12).88C23, C12.17(C22×C6), C12.141(C3⋊D4), (C6×C12).131C22, C12.168(C22×S3), (C3×D12).40C22, (D4×C32)⋊15C22, (Q8×C32)⋊14C22, C3⋊C84(C2×C6), C4.17(S3×C2×C6), (C3×C4○D4)⋊5C6, C4○D45(C3×S3), (C3×D4)⋊4(C2×C6), C35(C3×C8⋊C22), (C3×Q8)⋊6(C2×C6), (C2×C6).9(C3×D4), (C3×D4⋊S3)⋊14C2, (C3×C4○D4)⋊10S3, (C3×C3⋊C8)⋊21C22, (C2×C4).20(S3×C6), C2.23(C6×C3⋊D4), C4.24(C3×C3⋊D4), (C2×C12).42(C2×C6), (C3×C6).267(C2×D4), (C32×C4○D4)⋊1C2, C6.160(C2×C3⋊D4), (C3×C4.Dic3)⋊7C2, C22.5(C3×C3⋊D4), (C3×Q82S3)⋊12C2, (C2×C6).46(C3⋊D4), SmallGroup(288,720)

Series: Derived Chief Lower central Upper central

C1C12 — C3×D4⋊D6
C1C3C6C12C3×C12C3×D12C6×D12 — C3×D4⋊D6
C3C6C12 — C3×D4⋊D6
C1C6C2×C12C3×C4○D4

Generators and relations for C3×D4⋊D6
 G = < a,b,c,d,e | a3=b4=c2=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b2c, ece=b-1c, ede=d-1 >

Subgroups: 418 in 156 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C32, C12, C12, D6, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, D12, D12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×S3, C22×C6, C8⋊C22, C3×C12, C3×C12, S3×C6, C62, C62, C4.Dic3, D4⋊S3, Q82S3, C3×M4(2), C3×D8, C3×SD16, C2×D12, C6×D4, C3×C4○D4, C3×C4○D4, C3×C3⋊C8, C3×D12, C3×D12, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, S3×C2×C6, D4⋊D6, C3×C8⋊C22, C3×C4.Dic3, C3×D4⋊S3, C3×Q82S3, C6×D12, C32×C4○D4, C3×D4⋊D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C8⋊C22, S3×C6, C2×C3⋊D4, C6×D4, C3×C3⋊D4, S3×C2×C6, D4⋊D6, C3×C8⋊C22, C6×C3⋊D4, C3×D4⋊D6

Smallest permutation representation of C3×D4⋊D6
On 48 points
Generators in S48
(1 3 2)(4 6 5)(7 8 9)(10 12 11)(13 14 15)(16 17 18)(19 21 20)(22 23 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 45 47)(44 46 48)
(1 11 5 19)(2 12 6 20)(3 10 4 21)(7 14 16 23)(8 15 17 24)(9 13 18 22)(25 47 28 44)(26 48 29 45)(27 43 30 46)(31 40 34 37)(32 41 35 38)(33 42 36 39)
(1 43)(2 47)(3 45)(4 48)(5 46)(6 44)(7 34)(8 32)(9 36)(10 29)(11 27)(12 25)(13 42)(14 40)(15 38)(16 31)(17 35)(18 33)(19 30)(20 28)(21 26)(22 39)(23 37)(24 41)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 16)(5 18)(6 17)(10 23)(11 22)(12 24)(13 19)(14 21)(15 20)(25 35)(26 34)(27 33)(28 32)(29 31)(30 36)(37 45)(38 44)(39 43)(40 48)(41 47)(42 46)

G:=sub<Sym(48)| (1,3,2)(4,6,5)(7,8,9)(10,12,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,11,5,19)(2,12,6,20)(3,10,4,21)(7,14,16,23)(8,15,17,24)(9,13,18,22)(25,47,28,44)(26,48,29,45)(27,43,30,46)(31,40,34,37)(32,41,35,38)(33,42,36,39), (1,43)(2,47)(3,45)(4,48)(5,46)(6,44)(7,34)(8,32)(9,36)(10,29)(11,27)(12,25)(13,42)(14,40)(15,38)(16,31)(17,35)(18,33)(19,30)(20,28)(21,26)(22,39)(23,37)(24,41), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,16)(5,18)(6,17)(10,23)(11,22)(12,24)(13,19)(14,21)(15,20)(25,35)(26,34)(27,33)(28,32)(29,31)(30,36)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46)>;

G:=Group( (1,3,2)(4,6,5)(7,8,9)(10,12,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,11,5,19)(2,12,6,20)(3,10,4,21)(7,14,16,23)(8,15,17,24)(9,13,18,22)(25,47,28,44)(26,48,29,45)(27,43,30,46)(31,40,34,37)(32,41,35,38)(33,42,36,39), (1,43)(2,47)(3,45)(4,48)(5,46)(6,44)(7,34)(8,32)(9,36)(10,29)(11,27)(12,25)(13,42)(14,40)(15,38)(16,31)(17,35)(18,33)(19,30)(20,28)(21,26)(22,39)(23,37)(24,41), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,16)(5,18)(6,17)(10,23)(11,22)(12,24)(13,19)(14,21)(15,20)(25,35)(26,34)(27,33)(28,32)(29,31)(30,36)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46) );

G=PermutationGroup([[(1,3,2),(4,6,5),(7,8,9),(10,12,11),(13,14,15),(16,17,18),(19,21,20),(22,23,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,45,47),(44,46,48)], [(1,11,5,19),(2,12,6,20),(3,10,4,21),(7,14,16,23),(8,15,17,24),(9,13,18,22),(25,47,28,44),(26,48,29,45),(27,43,30,46),(31,40,34,37),(32,41,35,38),(33,42,36,39)], [(1,43),(2,47),(3,45),(4,48),(5,46),(6,44),(7,34),(8,32),(9,36),(10,29),(11,27),(12,25),(13,42),(14,40),(15,38),(16,31),(17,35),(18,33),(19,30),(20,28),(21,26),(22,39),(23,37),(24,41)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,16),(5,18),(6,17),(10,23),(11,22),(12,24),(13,19),(14,21),(15,20),(25,35),(26,34),(27,33),(28,32),(29,31),(30,36),(37,45),(38,44),(39,43),(40,48),(41,47),(42,46)]])

63 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C6A6B6C···6G6H···6R6S6T6U6V8A8B12A···12J12K···12U24A24B24C24D
order12222233333444666···66···666668812···1212···1224242424
size1124121211222224112···24···41212121212122···24···412121212

63 irreducible representations

dim11111111111122222222222222224444
type++++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D4D6D6D6C3×S3C3⋊D4C3×D4C3⋊D4C3×D4S3×C6S3×C6S3×C6C3×C3⋊D4C3×C3⋊D4C8⋊C22D4⋊D6C3×C8⋊C22C3×D4⋊D6
kernelC3×D4⋊D6C3×C4.Dic3C3×D4⋊S3C3×Q82S3C6×D12C32×C4○D4D4⋊D6C4.Dic3D4⋊S3Q82S3C2×D12C3×C4○D4C3×C4○D4C3×C12C62C2×C12C3×D4C3×Q8C4○D4C12C12C2×C6C2×C6C2×C4D4Q8C4C22C32C3C3C1
# reps11221122442211111122222222441224

Matrix representation of C3×D4⋊D6 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
27000
384600
00460
003527
,
355400
263800
0042
002969
,
64000
36900
0080
004165
,
0080
004165
64000
36900
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[27,38,0,0,0,46,0,0,0,0,46,35,0,0,0,27],[35,26,0,0,54,38,0,0,0,0,4,29,0,0,2,69],[64,36,0,0,0,9,0,0,0,0,8,41,0,0,0,65],[0,0,64,36,0,0,0,9,8,41,0,0,0,65,0,0] >;

C3×D4⋊D6 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes D_6
% in TeX

G:=Group("C3xD4:D6");
// GroupNames label

G:=SmallGroup(288,720);
// by ID

G=gap.SmallGroup(288,720);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,590,555,2524,648,102,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^2*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽