# Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C3⋊Dic3

Direct product G=N×Q with N=C2×C4 and Q=C3⋊Dic3
dρLabelID
C2×C4×C3⋊Dic3288C2xC4xC3:Dic3288,779

Semidirect products G=N:Q with N=C2×C4 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊(C3⋊Dic3) = C62.38D4φ: C3⋊Dic3/C32C4 ⊆ Aut C2×C472(C2xC4):(C3:Dic3)288,309
(C2×C4)⋊2(C3⋊Dic3) = C62.15Q8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4288(C2xC4):2(C3:Dic3)288,306
(C2×C4)⋊3(C3⋊Dic3) = C2×C12⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4288(C2xC4):3(C3:Dic3)288,782
(C2×C4)⋊4(C3⋊Dic3) = C62.247C23φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4144(C2xC4):4(C3:Dic3)288,783

Non-split extensions G=N.Q with N=C2×C4 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4).(C3⋊Dic3) = (C6×C12).C4φ: C3⋊Dic3/C32C4 ⊆ Aut C2×C4144(C2xC4).(C3:Dic3)288,311
(C2×C4).2(C3⋊Dic3) = C122.C2φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4288(C2xC4).2(C3:Dic3)288,278
(C2×C4).3(C3⋊Dic3) = C627C8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4144(C2xC4).3(C3:Dic3)288,305
(C2×C4).4(C3⋊Dic3) = C12.57D12φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4288(C2xC4).4(C3:Dic3)288,279
(C2×C4).5(C3⋊Dic3) = C24.94D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4144(C2xC4).5(C3:Dic3)288,287
(C2×C4).6(C3⋊Dic3) = C2×C12.58D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C4144(C2xC4).6(C3:Dic3)288,778
(C2×C4).7(C3⋊Dic3) = C4×C324C8central extension (φ=1)288(C2xC4).7(C3:Dic3)288,277
(C2×C4).8(C3⋊Dic3) = C2×C24.S3central extension (φ=1)288(C2xC4).8(C3:Dic3)288,286
(C2×C4).9(C3⋊Dic3) = C22×C324C8central extension (φ=1)288(C2xC4).9(C3:Dic3)288,777

׿
×
𝔽