Copied to
clipboard

G = C37⋊D4order 296 = 23·37

The semidirect product of C37 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C372D4, C22⋊D37, D742C2, Dic37⋊C2, C2.5D74, C74.5C22, (C2×C74)⋊2C2, SmallGroup(296,8)

Series: Derived Chief Lower central Upper central

C1C74 — C37⋊D4
C1C37C74D74 — C37⋊D4
C37C74 — C37⋊D4
C1C2C22

Generators and relations for C37⋊D4
 G = < a,b,c | a37=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

2C2
74C2
37C4
37C22
2D37
2C74
37D4

Smallest permutation representation of C37⋊D4
On 148 points
Generators in S148
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)(112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148)
(1 76 72 142)(2 75 73 141)(3 111 74 140)(4 110 38 139)(5 109 39 138)(6 108 40 137)(7 107 41 136)(8 106 42 135)(9 105 43 134)(10 104 44 133)(11 103 45 132)(12 102 46 131)(13 101 47 130)(14 100 48 129)(15 99 49 128)(16 98 50 127)(17 97 51 126)(18 96 52 125)(19 95 53 124)(20 94 54 123)(21 93 55 122)(22 92 56 121)(23 91 57 120)(24 90 58 119)(25 89 59 118)(26 88 60 117)(27 87 61 116)(28 86 62 115)(29 85 63 114)(30 84 64 113)(31 83 65 112)(32 82 66 148)(33 81 67 147)(34 80 68 146)(35 79 69 145)(36 78 70 144)(37 77 71 143)
(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(16 23)(17 22)(18 21)(19 20)(38 69)(39 68)(40 67)(41 66)(42 65)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)(70 74)(71 73)(75 143)(76 142)(77 141)(78 140)(79 139)(80 138)(81 137)(82 136)(83 135)(84 134)(85 133)(86 132)(87 131)(88 130)(89 129)(90 128)(91 127)(92 126)(93 125)(94 124)(95 123)(96 122)(97 121)(98 120)(99 119)(100 118)(101 117)(102 116)(103 115)(104 114)(105 113)(106 112)(107 148)(108 147)(109 146)(110 145)(111 144)

G:=sub<Sym(148)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,76,72,142)(2,75,73,141)(3,111,74,140)(4,110,38,139)(5,109,39,138)(6,108,40,137)(7,107,41,136)(8,106,42,135)(9,105,43,134)(10,104,44,133)(11,103,45,132)(12,102,46,131)(13,101,47,130)(14,100,48,129)(15,99,49,128)(16,98,50,127)(17,97,51,126)(18,96,52,125)(19,95,53,124)(20,94,54,123)(21,93,55,122)(22,92,56,121)(23,91,57,120)(24,90,58,119)(25,89,59,118)(26,88,60,117)(27,87,61,116)(28,86,62,115)(29,85,63,114)(30,84,64,113)(31,83,65,112)(32,82,66,148)(33,81,67,147)(34,80,68,146)(35,79,69,145)(36,78,70,144)(37,77,71,143), (2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(38,69)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(70,74)(71,73)(75,143)(76,142)(77,141)(78,140)(79,139)(80,138)(81,137)(82,136)(83,135)(84,134)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124)(95,123)(96,122)(97,121)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113)(106,112)(107,148)(108,147)(109,146)(110,145)(111,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,76,72,142)(2,75,73,141)(3,111,74,140)(4,110,38,139)(5,109,39,138)(6,108,40,137)(7,107,41,136)(8,106,42,135)(9,105,43,134)(10,104,44,133)(11,103,45,132)(12,102,46,131)(13,101,47,130)(14,100,48,129)(15,99,49,128)(16,98,50,127)(17,97,51,126)(18,96,52,125)(19,95,53,124)(20,94,54,123)(21,93,55,122)(22,92,56,121)(23,91,57,120)(24,90,58,119)(25,89,59,118)(26,88,60,117)(27,87,61,116)(28,86,62,115)(29,85,63,114)(30,84,64,113)(31,83,65,112)(32,82,66,148)(33,81,67,147)(34,80,68,146)(35,79,69,145)(36,78,70,144)(37,77,71,143), (2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(38,69)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(70,74)(71,73)(75,143)(76,142)(77,141)(78,140)(79,139)(80,138)(81,137)(82,136)(83,135)(84,134)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124)(95,123)(96,122)(97,121)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113)(106,112)(107,148)(108,147)(109,146)(110,145)(111,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111),(112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148)], [(1,76,72,142),(2,75,73,141),(3,111,74,140),(4,110,38,139),(5,109,39,138),(6,108,40,137),(7,107,41,136),(8,106,42,135),(9,105,43,134),(10,104,44,133),(11,103,45,132),(12,102,46,131),(13,101,47,130),(14,100,48,129),(15,99,49,128),(16,98,50,127),(17,97,51,126),(18,96,52,125),(19,95,53,124),(20,94,54,123),(21,93,55,122),(22,92,56,121),(23,91,57,120),(24,90,58,119),(25,89,59,118),(26,88,60,117),(27,87,61,116),(28,86,62,115),(29,85,63,114),(30,84,64,113),(31,83,65,112),(32,82,66,148),(33,81,67,147),(34,80,68,146),(35,79,69,145),(36,78,70,144),(37,77,71,143)], [(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(16,23),(17,22),(18,21),(19,20),(38,69),(39,68),(40,67),(41,66),(42,65),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54),(70,74),(71,73),(75,143),(76,142),(77,141),(78,140),(79,139),(80,138),(81,137),(82,136),(83,135),(84,134),(85,133),(86,132),(87,131),(88,130),(89,129),(90,128),(91,127),(92,126),(93,125),(94,124),(95,123),(96,122),(97,121),(98,120),(99,119),(100,118),(101,117),(102,116),(103,115),(104,114),(105,113),(106,112),(107,148),(108,147),(109,146),(110,145),(111,144)]])

77 conjugacy classes

class 1 2A2B2C 4 37A···37R74A···74BB
order1222437···3774···74
size11274742···22···2

77 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D37D74C37⋊D4
kernelC37⋊D4Dic37D74C2×C74C37C22C2C1
# reps11111181836

Matrix representation of C37⋊D4 in GL2(𝔽149) generated by

841
7347
,
41138
31108
,
4718
76102
G:=sub<GL(2,GF(149))| [84,73,1,47],[41,31,138,108],[47,76,18,102] >;

C37⋊D4 in GAP, Magma, Sage, TeX

C_{37}\rtimes D_4
% in TeX

G:=Group("C37:D4");
// GroupNames label

G:=SmallGroup(296,8);
// by ID

G=gap.SmallGroup(296,8);
# by ID

G:=PCGroup([4,-2,-2,-2,-37,49,4611]);
// Polycyclic

G:=Group<a,b,c|a^37=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C37⋊D4 in TeX

׿
×
𝔽