metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D37, C37⋊C2, sometimes denoted D74 or Dih37 or Dih74, SmallGroup(74,1)
Series: Derived ►Chief ►Lower central ►Upper central
C37 — D37 |
Generators and relations for D37
G = < a,b | a37=b2=1, bab=a-1 >
Character table of D37
class | 1 | 2 | 37A | 37B | 37C | 37D | 37E | 37F | 37G | 37H | 37I | 37J | 37K | 37L | 37M | 37N | 37O | 37P | 37Q | 37R | |
size | 1 | 37 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ3724+ζ3713 | ζ3736+ζ37 | ζ3726+ζ3711 | ζ3723+ζ3714 | ζ3735+ζ372 | ζ3727+ζ3710 | ζ3722+ζ3715 | ζ3734+ζ373 | ζ3728+ζ379 | ζ3721+ζ3716 | ζ3733+ζ374 | ζ3729+ζ378 | ζ3720+ζ3717 | ζ3732+ζ375 | ζ3730+ζ377 | ζ3719+ζ3718 | ζ3731+ζ376 | ζ3725+ζ3712 | orthogonal faithful |
ρ4 | 2 | 0 | ζ3730+ζ377 | ζ3729+ζ378 | ζ3723+ζ3714 | ζ3736+ζ37 | ζ3721+ζ3716 | ζ3731+ζ376 | ζ3728+ζ379 | ζ3724+ζ3713 | ζ3735+ζ372 | ζ3720+ζ3717 | ζ3732+ζ375 | ζ3727+ζ3710 | ζ3725+ζ3712 | ζ3734+ζ373 | ζ3719+ζ3718 | ζ3733+ζ374 | ζ3726+ζ3711 | ζ3722+ζ3715 | orthogonal faithful |
ρ5 | 2 | 0 | ζ3720+ζ3717 | ζ3730+ζ377 | ζ3734+ζ373 | ζ3724+ζ3713 | ζ3723+ζ3714 | ζ3733+ζ374 | ζ3731+ζ376 | ζ3721+ζ3716 | ζ3726+ζ3711 | ζ3736+ζ37 | ζ3728+ζ379 | ζ3719+ζ3718 | ζ3729+ζ378 | ζ3735+ζ372 | ζ3725+ζ3712 | ζ3722+ζ3715 | ζ3732+ζ375 | ζ3727+ζ3710 | orthogonal faithful |
ρ6 | 2 | 0 | ζ3727+ζ3710 | ζ3722+ζ3715 | ζ3720+ζ3717 | ζ3725+ζ3712 | ζ3730+ζ377 | ζ3735+ζ372 | ζ3734+ζ373 | ζ3729+ζ378 | ζ3724+ζ3713 | ζ3719+ζ3718 | ζ3723+ζ3714 | ζ3728+ζ379 | ζ3733+ζ374 | ζ3736+ζ37 | ζ3731+ζ376 | ζ3726+ζ3711 | ζ3721+ζ3716 | ζ3732+ζ375 | orthogonal faithful |
ρ7 | 2 | 0 | ζ3732+ζ375 | ζ3726+ζ3711 | ζ3727+ζ3710 | ζ3731+ζ376 | ζ3722+ζ3715 | ζ3736+ζ37 | ζ3720+ζ3717 | ζ3733+ζ374 | ζ3725+ζ3712 | ζ3728+ζ379 | ζ3730+ζ377 | ζ3723+ζ3714 | ζ3735+ζ372 | ζ3719+ζ3718 | ζ3734+ζ373 | ζ3724+ζ3713 | ζ3729+ζ378 | ζ3721+ζ3716 | orthogonal faithful |
ρ8 | 2 | 0 | ζ3728+ζ379 | ζ3732+ζ375 | ζ3719+ζ3718 | ζ3733+ζ374 | ζ3727+ζ3710 | ζ3724+ζ3713 | ζ3736+ζ37 | ζ3722+ζ3715 | ζ3729+ζ378 | ζ3731+ζ376 | ζ3720+ζ3717 | ζ3734+ζ373 | ζ3726+ζ3711 | ζ3725+ζ3712 | ζ3735+ζ372 | ζ3721+ζ3716 | ζ3730+ζ377 | ζ3723+ζ3714 | orthogonal faithful |
ρ9 | 2 | 0 | ζ3729+ζ378 | ζ3725+ζ3712 | ζ3721+ζ3716 | ζ3720+ζ3717 | ζ3724+ζ3713 | ζ3728+ζ379 | ζ3732+ζ375 | ζ3736+ζ37 | ζ3734+ζ373 | ζ3730+ζ377 | ζ3726+ζ3711 | ζ3722+ζ3715 | ζ3719+ζ3718 | ζ3723+ζ3714 | ζ3727+ζ3710 | ζ3731+ζ376 | ζ3735+ζ372 | ζ3733+ζ374 | orthogonal faithful |
ρ10 | 2 | 0 | ζ3726+ζ3711 | ζ3735+ζ372 | ζ3722+ζ3715 | ζ3728+ζ379 | ζ3733+ζ374 | ζ3720+ζ3717 | ζ3730+ζ377 | ζ3731+ζ376 | ζ3719+ζ3718 | ζ3732+ζ375 | ζ3729+ζ378 | ζ3721+ζ3716 | ζ3734+ζ373 | ζ3727+ζ3710 | ζ3723+ζ3714 | ζ3736+ζ37 | ζ3725+ζ3712 | ζ3724+ζ3713 | orthogonal faithful |
ρ11 | 2 | 0 | ζ3722+ζ3715 | ζ3733+ζ374 | ζ3730+ζ377 | ζ3719+ζ3718 | ζ3729+ζ378 | ζ3734+ζ373 | ζ3723+ζ3714 | ζ3725+ζ3712 | ζ3736+ζ37 | ζ3727+ζ3710 | ζ3721+ζ3716 | ζ3732+ζ375 | ζ3731+ζ376 | ζ3720+ζ3717 | ζ3728+ζ379 | ζ3735+ζ372 | ζ3724+ζ3713 | ζ3726+ζ3711 | orthogonal faithful |
ρ12 | 2 | 0 | ζ3721+ζ3716 | ζ3724+ζ3713 | ζ3732+ζ375 | ζ3734+ζ373 | ζ3726+ζ3711 | ζ3719+ζ3718 | ζ3727+ζ3710 | ζ3735+ζ372 | ζ3731+ζ376 | ζ3723+ζ3714 | ζ3722+ζ3715 | ζ3730+ζ377 | ζ3736+ζ37 | ζ3728+ζ379 | ζ3720+ζ3717 | ζ3725+ζ3712 | ζ3733+ζ374 | ζ3729+ζ378 | orthogonal faithful |
ρ13 | 2 | 0 | ζ3723+ζ3714 | ζ3721+ζ3716 | ζ3728+ζ379 | ζ3735+ζ372 | ζ3732+ζ375 | ζ3725+ζ3712 | ζ3719+ζ3718 | ζ3726+ζ3711 | ζ3733+ζ374 | ζ3734+ζ373 | ζ3727+ζ3710 | ζ3720+ζ3717 | ζ3724+ζ3713 | ζ3731+ζ376 | ζ3736+ζ37 | ζ3729+ζ378 | ζ3722+ζ3715 | ζ3730+ζ377 | orthogonal faithful |
ρ14 | 2 | 0 | ζ3719+ζ3718 | ζ3727+ζ3710 | ζ3736+ζ37 | ζ3729+ζ378 | ζ3720+ζ3717 | ζ3726+ζ3711 | ζ3735+ζ372 | ζ3730+ζ377 | ζ3721+ζ3716 | ζ3725+ζ3712 | ζ3734+ζ373 | ζ3731+ζ376 | ζ3722+ζ3715 | ζ3724+ζ3713 | ζ3733+ζ374 | ζ3732+ζ375 | ζ3723+ζ3714 | ζ3728+ζ379 | orthogonal faithful |
ρ15 | 2 | 0 | ζ3735+ζ372 | ζ3734+ζ373 | ζ3733+ζ374 | ζ3732+ζ375 | ζ3731+ζ376 | ζ3730+ζ377 | ζ3729+ζ378 | ζ3728+ζ379 | ζ3727+ζ3710 | ζ3726+ζ3711 | ζ3725+ζ3712 | ζ3724+ζ3713 | ζ3723+ζ3714 | ζ3722+ζ3715 | ζ3721+ζ3716 | ζ3720+ζ3717 | ζ3719+ζ3718 | ζ3736+ζ37 | orthogonal faithful |
ρ16 | 2 | 0 | ζ3734+ζ373 | ζ3723+ζ3714 | ζ3731+ζ376 | ζ3726+ζ3711 | ζ3728+ζ379 | ζ3729+ζ378 | ζ3725+ζ3712 | ζ3732+ζ375 | ζ3722+ζ3715 | ζ3735+ζ372 | ζ3719+ζ3718 | ζ3736+ζ37 | ζ3721+ζ3716 | ζ3733+ζ374 | ζ3724+ζ3713 | ζ3730+ζ377 | ζ3727+ζ3710 | ζ3720+ζ3717 | orthogonal faithful |
ρ17 | 2 | 0 | ζ3725+ζ3712 | ζ3719+ζ3718 | ζ3724+ζ3713 | ζ3730+ζ377 | ζ3736+ζ37 | ζ3732+ζ375 | ζ3726+ζ3711 | ζ3720+ζ3717 | ζ3723+ζ3714 | ζ3729+ζ378 | ζ3735+ζ372 | ζ3733+ζ374 | ζ3727+ζ3710 | ζ3721+ζ3716 | ζ3722+ζ3715 | ζ3728+ζ379 | ζ3734+ζ373 | ζ3731+ζ376 | orthogonal faithful |
ρ18 | 2 | 0 | ζ3736+ζ37 | ζ3720+ζ3717 | ζ3735+ζ372 | ζ3721+ζ3716 | ζ3734+ζ373 | ζ3722+ζ3715 | ζ3733+ζ374 | ζ3723+ζ3714 | ζ3732+ζ375 | ζ3724+ζ3713 | ζ3731+ζ376 | ζ3725+ζ3712 | ζ3730+ζ377 | ζ3726+ζ3711 | ζ3729+ζ378 | ζ3727+ζ3710 | ζ3728+ζ379 | ζ3719+ζ3718 | orthogonal faithful |
ρ19 | 2 | 0 | ζ3731+ζ376 | ζ3728+ζ379 | ζ3725+ζ3712 | ζ3722+ζ3715 | ζ3719+ζ3718 | ζ3721+ζ3716 | ζ3724+ζ3713 | ζ3727+ζ3710 | ζ3730+ζ377 | ζ3733+ζ374 | ζ3736+ζ37 | ζ3735+ζ372 | ζ3732+ζ375 | ζ3729+ζ378 | ζ3726+ζ3711 | ζ3723+ζ3714 | ζ3720+ζ3717 | ζ3734+ζ373 | orthogonal faithful |
ρ20 | 2 | 0 | ζ3733+ζ374 | ζ3731+ζ376 | ζ3729+ζ378 | ζ3727+ζ3710 | ζ3725+ζ3712 | ζ3723+ζ3714 | ζ3721+ζ3716 | ζ3719+ζ3718 | ζ3720+ζ3717 | ζ3722+ζ3715 | ζ3724+ζ3713 | ζ3726+ζ3711 | ζ3728+ζ379 | ζ3730+ζ377 | ζ3732+ζ375 | ζ3734+ζ373 | ζ3736+ζ37 | ζ3735+ζ372 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 20)
G:=sub<Sym(37)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,20)]])
D37 is a maximal subgroup of
C37⋊C4 C37⋊C6 D111 D185
D37 is a maximal quotient of Dic37 D111 D185
Matrix representation of D37 ►in GL2(𝔽149) generated by
31 | 148 |
1 | 0 |
31 | 148 |
66 | 118 |
G:=sub<GL(2,GF(149))| [31,1,148,0],[31,66,148,118] >;
D37 in GAP, Magma, Sage, TeX
D_{37}
% in TeX
G:=Group("D37");
// GroupNames label
G:=SmallGroup(74,1);
// by ID
G=gap.SmallGroup(74,1);
# by ID
G:=PCGroup([2,-2,-37,289]);
// Polycyclic
G:=Group<a,b|a^37=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D37 in TeX
Character table of D37 in TeX