Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C26

Direct product G=N×Q with N=C6 and Q=C2×C26

Semidirect products G=N:Q with N=C6 and Q=C2×C26
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C26) = S3×C2×C26φ: C2×C26/C26C2 ⊆ Aut C6156C6:(C2xC26)312,59

Non-split extensions G=N.Q with N=C6 and Q=C2×C26
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C26) = C13×Dic6φ: C2×C26/C26C2 ⊆ Aut C63122C6.1(C2xC26)312,32
C6.2(C2×C26) = S3×C52φ: C2×C26/C26C2 ⊆ Aut C61562C6.2(C2xC26)312,33
C6.3(C2×C26) = C13×D12φ: C2×C26/C26C2 ⊆ Aut C61562C6.3(C2xC26)312,34
C6.4(C2×C26) = Dic3×C26φ: C2×C26/C26C2 ⊆ Aut C6312C6.4(C2xC26)312,35
C6.5(C2×C26) = C13×C3⋊D4φ: C2×C26/C26C2 ⊆ Aut C61562C6.5(C2xC26)312,36
C6.6(C2×C26) = D4×C39central extension (φ=1)1562C6.6(C2xC26)312,43
C6.7(C2×C26) = Q8×C39central extension (φ=1)3122C6.7(C2xC26)312,44