Extensions 1→N→G→Q→1 with N=C2×C76 and Q=C2

Direct product G=N×Q with N=C2×C76 and Q=C2
dρLabelID
C22×C76304C2^2xC76304,37

Semidirect products G=N:Q with N=C2×C76 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C76)⋊1C2 = D38⋊C4φ: C2/C1C2 ⊆ Aut C2×C76152(C2xC76):1C2304,13
(C2×C76)⋊2C2 = C22⋊C4×C19φ: C2/C1C2 ⊆ Aut C2×C76152(C2xC76):2C2304,20
(C2×C76)⋊3C2 = C2×D76φ: C2/C1C2 ⊆ Aut C2×C76152(C2xC76):3C2304,29
(C2×C76)⋊4C2 = D765C2φ: C2/C1C2 ⊆ Aut C2×C761522(C2xC76):4C2304,30
(C2×C76)⋊5C2 = C2×C4×D19φ: C2/C1C2 ⊆ Aut C2×C76152(C2xC76):5C2304,28
(C2×C76)⋊6C2 = D4×C38φ: C2/C1C2 ⊆ Aut C2×C76152(C2xC76):6C2304,38
(C2×C76)⋊7C2 = C4○D4×C19φ: C2/C1C2 ⊆ Aut C2×C761522(C2xC76):7C2304,40

Non-split extensions G=N.Q with N=C2×C76 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C76).1C2 = Dic19⋊C4φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).1C2304,11
(C2×C76).2C2 = C4⋊C4×C19φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).2C2304,21
(C2×C76).3C2 = C76⋊C4φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).3C2304,12
(C2×C76).4C2 = C2×Dic38φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).4C2304,27
(C2×C76).5C2 = C76.C4φ: C2/C1C2 ⊆ Aut C2×C761522(C2xC76).5C2304,9
(C2×C76).6C2 = C2×C19⋊C8φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).6C2304,8
(C2×C76).7C2 = C4×Dic19φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).7C2304,10
(C2×C76).8C2 = M4(2)×C19φ: C2/C1C2 ⊆ Aut C2×C761522(C2xC76).8C2304,23
(C2×C76).9C2 = Q8×C38φ: C2/C1C2 ⊆ Aut C2×C76304(C2xC76).9C2304,39

׿
×
𝔽