Copied to
clipboard

G = C2×C76order 152 = 23·19

Abelian group of type [2,76]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C76, SmallGroup(152,8)

Series: Derived Chief Lower central Upper central

C1 — C2×C76
C1C2C38C76 — C2×C76
C1 — C2×C76
C1 — C2×C76

Generators and relations for C2×C76
 G = < a,b | a2=b76=1, ab=ba >


Smallest permutation representation of C2×C76
Regular action on 152 points
Generators in S152
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 121)(12 122)(13 123)(14 124)(15 125)(16 126)(17 127)(18 128)(19 129)(20 130)(21 131)(22 132)(23 133)(24 134)(25 135)(26 136)(27 137)(28 138)(29 139)(30 140)(31 141)(32 142)(33 143)(34 144)(35 145)(36 146)(37 147)(38 148)(39 149)(40 150)(41 151)(42 152)(43 77)(44 78)(45 79)(46 80)(47 81)(48 82)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 89)(56 90)(57 91)(58 92)(59 93)(60 94)(61 95)(62 96)(63 97)(64 98)(65 99)(66 100)(67 101)(68 102)(69 103)(70 104)(71 105)(72 106)(73 107)(74 108)(75 109)(76 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)

G:=sub<Sym(152)| (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)>;

G:=Group( (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152) );

G=PermutationGroup([[(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,121),(12,122),(13,123),(14,124),(15,125),(16,126),(17,127),(18,128),(19,129),(20,130),(21,131),(22,132),(23,133),(24,134),(25,135),(26,136),(27,137),(28,138),(29,139),(30,140),(31,141),(32,142),(33,143),(34,144),(35,145),(36,146),(37,147),(38,148),(39,149),(40,150),(41,151),(42,152),(43,77),(44,78),(45,79),(46,80),(47,81),(48,82),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,89),(56,90),(57,91),(58,92),(59,93),(60,94),(61,95),(62,96),(63,97),(64,98),(65,99),(66,100),(67,101),(68,102),(69,103),(70,104),(71,105),(72,106),(73,107),(74,108),(75,109),(76,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)]])

C2×C76 is a maximal subgroup of   C76.C4  Dic19⋊C4  C76⋊C4  D38⋊C4  D765C2

152 conjugacy classes

class 1 2A2B2C4A4B4C4D19A···19R38A···38BB76A···76BT
order1222444419···1938···3876···76
size111111111···11···11···1

152 irreducible representations

dim11111111
type+++
imageC1C2C2C4C19C38C38C76
kernelC2×C76C76C2×C38C38C2×C4C4C22C2
# reps121418361872

Matrix representation of C2×C76 in GL2(𝔽229) generated by

2280
0228
,
260
0107
G:=sub<GL(2,GF(229))| [228,0,0,228],[26,0,0,107] >;

C2×C76 in GAP, Magma, Sage, TeX

C_2\times C_{76}
% in TeX

G:=Group("C2xC76");
// GroupNames label

G:=SmallGroup(152,8);
// by ID

G=gap.SmallGroup(152,8);
# by ID

G:=PCGroup([4,-2,-2,-19,-2,304]);
// Polycyclic

G:=Group<a,b|a^2=b^76=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2×C76 in TeX

׿
×
𝔽