Copied to
clipboard

G = D765C2order 304 = 24·19

The semidirect product of D76 and C2 acting through Inn(D76)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D765C2, C4.16D38, Dic385C2, C38.4C23, C22.2D38, C76.16C22, D38.1C22, Dic19.2C22, (C2×C76)⋊4C2, (C2×C4)⋊3D19, (C4×D19)⋊4C2, C191(C4○D4), C19⋊D43C2, C2.5(C22×D19), (C2×C38).11C22, SmallGroup(304,30)

Series: Derived Chief Lower central Upper central

C1C38 — D765C2
C1C19C38D38C4×D19 — D765C2
C19C38 — D765C2
C1C4C2×C4

Generators and relations for D765C2
 G = < a,b,c | a76=b2=c2=1, bab=a-1, ac=ca, cbc=a38b >

2C2
38C2
38C2
19C4
19C4
19C22
19C22
2C38
2D19
2D19
19C2×C4
19D4
19D4
19D4
19C2×C4
19Q8
19C4○D4

Smallest permutation representation of D765C2
On 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 76)(21 75)(22 74)(23 73)(24 72)(25 71)(26 70)(27 69)(28 68)(29 67)(30 66)(31 65)(32 64)(33 63)(34 62)(35 61)(36 60)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(77 139)(78 138)(79 137)(80 136)(81 135)(82 134)(83 133)(84 132)(85 131)(86 130)(87 129)(88 128)(89 127)(90 126)(91 125)(92 124)(93 123)(94 122)(95 121)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)(140 152)(141 151)(142 150)(143 149)(144 148)(145 147)
(1 80)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(41 120)(42 121)(43 122)(44 123)(45 124)(46 125)(47 126)(48 127)(49 128)(50 129)(51 130)(52 131)(53 132)(54 133)(55 134)(56 135)(57 136)(58 137)(59 138)(60 139)(61 140)(62 141)(63 142)(64 143)(65 144)(66 145)(67 146)(68 147)(69 148)(70 149)(71 150)(72 151)(73 152)(74 77)(75 78)(76 79)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,66)(31,65)(32,64)(33,63)(34,62)(35,61)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(77,139)(78,138)(79,137)(80,136)(81,135)(82,134)(83,133)(84,132)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)(140,152)(141,151)(142,150)(143,149)(144,148)(145,147), (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(49,128)(50,129)(51,130)(52,131)(53,132)(54,133)(55,134)(56,135)(57,136)(58,137)(59,138)(60,139)(61,140)(62,141)(63,142)(64,143)(65,144)(66,145)(67,146)(68,147)(69,148)(70,149)(71,150)(72,151)(73,152)(74,77)(75,78)(76,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,66)(31,65)(32,64)(33,63)(34,62)(35,61)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(77,139)(78,138)(79,137)(80,136)(81,135)(82,134)(83,133)(84,132)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)(140,152)(141,151)(142,150)(143,149)(144,148)(145,147), (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(49,128)(50,129)(51,130)(52,131)(53,132)(54,133)(55,134)(56,135)(57,136)(58,137)(59,138)(60,139)(61,140)(62,141)(63,142)(64,143)(65,144)(66,145)(67,146)(68,147)(69,148)(70,149)(71,150)(72,151)(73,152)(74,77)(75,78)(76,79) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,76),(21,75),(22,74),(23,73),(24,72),(25,71),(26,70),(27,69),(28,68),(29,67),(30,66),(31,65),(32,64),(33,63),(34,62),(35,61),(36,60),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(77,139),(78,138),(79,137),(80,136),(81,135),(82,134),(83,133),(84,132),(85,131),(86,130),(87,129),(88,128),(89,127),(90,126),(91,125),(92,124),(93,123),(94,122),(95,121),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109),(140,152),(141,151),(142,150),(143,149),(144,148),(145,147)], [(1,80),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(41,120),(42,121),(43,122),(44,123),(45,124),(46,125),(47,126),(48,127),(49,128),(50,129),(51,130),(52,131),(53,132),(54,133),(55,134),(56,135),(57,136),(58,137),(59,138),(60,139),(61,140),(62,141),(63,142),(64,143),(65,144),(66,145),(67,146),(68,147),(69,148),(70,149),(71,150),(72,151),(73,152),(74,77),(75,78),(76,79)])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E19A···19I38A···38AA76A···76AJ
order122224444419···1938···3876···76
size112383811238382···22···22···2

82 irreducible representations

dim11111122222
type+++++++++
imageC1C2C2C2C2C2C4○D4D19D38D38D765C2
kernelD765C2Dic38C4×D19D76C19⋊D4C2×C76C19C2×C4C4C22C1
# reps1121212918936

Matrix representation of D765C2 in GL2(𝔽229) generated by

21397
132130
,
39200
84190
,
96183
46133
G:=sub<GL(2,GF(229))| [213,132,97,130],[39,84,200,190],[96,46,183,133] >;

D765C2 in GAP, Magma, Sage, TeX

D_{76}\rtimes_5C_2
% in TeX

G:=Group("D76:5C2");
// GroupNames label

G:=SmallGroup(304,30);
// by ID

G=gap.SmallGroup(304,30);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,46,182,7204]);
// Polycyclic

G:=Group<a,b,c|a^76=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^38*b>;
// generators/relations

Export

Subgroup lattice of D765C2 in TeX

׿
×
𝔽