Copied to
clipboard

G = C2×D76order 304 = 24·19

Direct product of C2 and D76

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D76, C42D38, C381D4, C762C22, D381C22, C38.3C23, C22.10D38, C191(C2×D4), (C2×C76)⋊3C2, (C2×C4)⋊2D19, (C22×D19)⋊1C2, C2.4(C22×D19), (C2×C38).10C22, SmallGroup(304,29)

Series: Derived Chief Lower central Upper central

C1C38 — C2×D76
C1C19C38D38C22×D19 — C2×D76
C19C38 — C2×D76
C1C22C2×C4

Generators and relations for C2×D76
 G = < a,b,c | a2=b76=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 556 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C2×D4, C19, D19, C38, C38, C76, D38, D38, C2×C38, D76, C2×C76, C22×D19, C2×D76
Quotients: C1, C2, C22, D4, C23, C2×D4, D19, D38, D76, C22×D19, C2×D76

Smallest permutation representation of C2×D76
On 152 points
Generators in S152
(1 101)(2 102)(3 103)(4 104)(5 105)(6 106)(7 107)(8 108)(9 109)(10 110)(11 111)(12 112)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 129)(30 130)(31 131)(32 132)(33 133)(34 134)(35 135)(36 136)(37 137)(38 138)(39 139)(40 140)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 77)(54 78)(55 79)(56 80)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 76)(2 75)(3 74)(4 73)(5 72)(6 71)(7 70)(8 69)(9 68)(10 67)(11 66)(12 65)(13 64)(14 63)(15 62)(16 61)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(77 124)(78 123)(79 122)(80 121)(81 120)(82 119)(83 118)(84 117)(85 116)(86 115)(87 114)(88 113)(89 112)(90 111)(91 110)(92 109)(93 108)(94 107)(95 106)(96 105)(97 104)(98 103)(99 102)(100 101)(125 152)(126 151)(127 150)(128 149)(129 148)(130 147)(131 146)(132 145)(133 144)(134 143)(135 142)(136 141)(137 140)(138 139)

G:=sub<Sym(152)| (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,124)(78,123)(79,122)(80,121)(81,120)(82,119)(83,118)(84,117)(85,116)(86,115)(87,114)(88,113)(89,112)(90,111)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(125,152)(126,151)(127,150)(128,149)(129,148)(130,147)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,140)(138,139)>;

G:=Group( (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,124)(78,123)(79,122)(80,121)(81,120)(82,119)(83,118)(84,117)(85,116)(86,115)(87,114)(88,113)(89,112)(90,111)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(125,152)(126,151)(127,150)(128,149)(129,148)(130,147)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,140)(138,139) );

G=PermutationGroup([[(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110),(11,111),(12,112),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,129),(30,130),(31,131),(32,132),(33,133),(34,134),(35,135),(36,136),(37,137),(38,138),(39,139),(40,140),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,77),(54,78),(55,79),(56,80),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,76),(2,75),(3,74),(4,73),(5,72),(6,71),(7,70),(8,69),(9,68),(10,67),(11,66),(12,65),(13,64),(14,63),(15,62),(16,61),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(77,124),(78,123),(79,122),(80,121),(81,120),(82,119),(83,118),(84,117),(85,116),(86,115),(87,114),(88,113),(89,112),(90,111),(91,110),(92,109),(93,108),(94,107),(95,106),(96,105),(97,104),(98,103),(99,102),(100,101),(125,152),(126,151),(127,150),(128,149),(129,148),(130,147),(131,146),(132,145),(133,144),(134,143),(135,142),(136,141),(137,140),(138,139)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B19A···19I38A···38AA76A···76AJ
order122222224419···1938···3876···76
size111138383838222···22···22···2

82 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D19D38D38D76
kernelC2×D76D76C2×C76C22×D19C38C2×C4C4C22C2
# reps14122918936

Matrix representation of C2×D76 in GL4(𝔽229) generated by

228000
022800
002280
000228
,
10614700
827700
0042119
0014410
,
10614700
21812300
0043186
0027186
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,228,0,0,0,0,228],[106,82,0,0,147,77,0,0,0,0,42,144,0,0,119,10],[106,218,0,0,147,123,0,0,0,0,43,27,0,0,186,186] >;

C2×D76 in GAP, Magma, Sage, TeX

C_2\times D_{76}
% in TeX

G:=Group("C2xD76");
// GroupNames label

G:=SmallGroup(304,29);
// by ID

G=gap.SmallGroup(304,29);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,182,42,7204]);
// Polycyclic

G:=Group<a,b,c|a^2=b^76=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽