direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D76, C4⋊2D38, C38⋊1D4, C76⋊2C22, D38⋊1C22, C38.3C23, C22.10D38, C19⋊1(C2×D4), (C2×C76)⋊3C2, (C2×C4)⋊2D19, (C22×D19)⋊1C2, C2.4(C22×D19), (C2×C38).10C22, SmallGroup(304,29)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D76
G = < a,b,c | a2=b76=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 556 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C2×D4, C19, D19, C38, C38, C76, D38, D38, C2×C38, D76, C2×C76, C22×D19, C2×D76
Quotients: C1, C2, C22, D4, C23, C2×D4, D19, D38, D76, C22×D19, C2×D76
(1 101)(2 102)(3 103)(4 104)(5 105)(6 106)(7 107)(8 108)(9 109)(10 110)(11 111)(12 112)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 129)(30 130)(31 131)(32 132)(33 133)(34 134)(35 135)(36 136)(37 137)(38 138)(39 139)(40 140)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 77)(54 78)(55 79)(56 80)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 76)(2 75)(3 74)(4 73)(5 72)(6 71)(7 70)(8 69)(9 68)(10 67)(11 66)(12 65)(13 64)(14 63)(15 62)(16 61)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(77 124)(78 123)(79 122)(80 121)(81 120)(82 119)(83 118)(84 117)(85 116)(86 115)(87 114)(88 113)(89 112)(90 111)(91 110)(92 109)(93 108)(94 107)(95 106)(96 105)(97 104)(98 103)(99 102)(100 101)(125 152)(126 151)(127 150)(128 149)(129 148)(130 147)(131 146)(132 145)(133 144)(134 143)(135 142)(136 141)(137 140)(138 139)
G:=sub<Sym(152)| (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,124)(78,123)(79,122)(80,121)(81,120)(82,119)(83,118)(84,117)(85,116)(86,115)(87,114)(88,113)(89,112)(90,111)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(125,152)(126,151)(127,150)(128,149)(129,148)(130,147)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,140)(138,139)>;
G:=Group( (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,131)(32,132)(33,133)(34,134)(35,135)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,124)(78,123)(79,122)(80,121)(81,120)(82,119)(83,118)(84,117)(85,116)(86,115)(87,114)(88,113)(89,112)(90,111)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101)(125,152)(126,151)(127,150)(128,149)(129,148)(130,147)(131,146)(132,145)(133,144)(134,143)(135,142)(136,141)(137,140)(138,139) );
G=PermutationGroup([[(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110),(11,111),(12,112),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,129),(30,130),(31,131),(32,132),(33,133),(34,134),(35,135),(36,136),(37,137),(38,138),(39,139),(40,140),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,77),(54,78),(55,79),(56,80),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,76),(2,75),(3,74),(4,73),(5,72),(6,71),(7,70),(8,69),(9,68),(10,67),(11,66),(12,65),(13,64),(14,63),(15,62),(16,61),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(77,124),(78,123),(79,122),(80,121),(81,120),(82,119),(83,118),(84,117),(85,116),(86,115),(87,114),(88,113),(89,112),(90,111),(91,110),(92,109),(93,108),(94,107),(95,106),(96,105),(97,104),(98,103),(99,102),(100,101),(125,152),(126,151),(127,150),(128,149),(129,148),(130,147),(131,146),(132,145),(133,144),(134,143),(135,142),(136,141),(137,140),(138,139)]])
82 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 19A | ··· | 19I | 38A | ··· | 38AA | 76A | ··· | 76AJ |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 19 | ··· | 19 | 38 | ··· | 38 | 76 | ··· | 76 |
size | 1 | 1 | 1 | 1 | 38 | 38 | 38 | 38 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D19 | D38 | D38 | D76 |
kernel | C2×D76 | D76 | C2×C76 | C22×D19 | C38 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 2 | 9 | 18 | 9 | 36 |
Matrix representation of C2×D76 ►in GL4(𝔽229) generated by
228 | 0 | 0 | 0 |
0 | 228 | 0 | 0 |
0 | 0 | 228 | 0 |
0 | 0 | 0 | 228 |
106 | 147 | 0 | 0 |
82 | 77 | 0 | 0 |
0 | 0 | 42 | 119 |
0 | 0 | 144 | 10 |
106 | 147 | 0 | 0 |
218 | 123 | 0 | 0 |
0 | 0 | 43 | 186 |
0 | 0 | 27 | 186 |
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,228,0,0,0,0,228],[106,82,0,0,147,77,0,0,0,0,42,144,0,0,119,10],[106,218,0,0,147,123,0,0,0,0,43,27,0,0,186,186] >;
C2×D76 in GAP, Magma, Sage, TeX
C_2\times D_{76}
% in TeX
G:=Group("C2xD76");
// GroupNames label
G:=SmallGroup(304,29);
// by ID
G=gap.SmallGroup(304,29);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-19,182,42,7204]);
// Polycyclic
G:=Group<a,b,c|a^2=b^76=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations