Extensions 1→N→G→Q→1 with N=C4×C52C8 and Q=C2

Direct product G=N×Q with N=C4×C52C8 and Q=C2
dρLabelID
C2×C4×C52C8320C2xC4xC5:2C8320,547

Semidirect products G=N:Q with N=C4×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C52C8)⋊1C2 = D204C8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):1C2320,41
(C4×C52C8)⋊2C2 = C20.57D8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):2C2320,92
(C4×C52C8)⋊3C2 = C42.196D10φ: C2/C1C2 ⊆ Out C4×C52C8804(C4xC5:2C8):3C2320,451
(C4×C52C8)⋊4C2 = D205C8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):4C2320,461
(C4×C52C8)⋊5C2 = C206M4(2)φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):5C2320,465
(C4×C52C8)⋊6C2 = D4×C52C8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):6C2320,637
(C4×C52C8)⋊7C2 = C207M4(2)φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):7C2320,639
(C4×C52C8)⋊8C2 = C4×D4⋊D5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):8C2320,640
(C4×C52C8)⋊9C2 = C4×D4.D5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):9C2320,644
(C4×C52C8)⋊10C2 = C4×Q8⋊D5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):10C2320,652
(C4×C52C8)⋊11C2 = C42.213D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):11C2320,683
(C4×C52C8)⋊12C2 = C42.214D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):12C2320,686
(C4×C52C8)⋊13C2 = C42.216D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):13C2320,695
(C4×C52C8)⋊14C2 = C20.16D8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):14C2320,697
(C4×C52C8)⋊15C2 = C20⋊D8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):15C2320,700
(C4×C52C8)⋊16C2 = C204SD16φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):16C2320,703
(C4×C52C8)⋊17C2 = C206SD16φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):17C2320,712
(C4×C52C8)⋊18C2 = C20.D8φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):18C2320,715
(C4×C52C8)⋊19C2 = C42.282D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):19C2320,312
(C4×C52C8)⋊20C2 = C4×C8⋊D5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):20C2320,314
(C4×C52C8)⋊21C2 = D10.7C42φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):21C2320,335
(C4×C52C8)⋊22C2 = C42.185D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):22C2320,336
(C4×C52C8)⋊23C2 = C4×C4.Dic5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):23C2320,549
(C4×C52C8)⋊24C2 = C42.6Dic5φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):24C2320,552
(C4×C52C8)⋊25C2 = C20.35C42φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):25C2320,624
(C4×C52C8)⋊26C2 = C42.187D10φ: C2/C1C2 ⊆ Out C4×C52C8160(C4xC5:2C8):26C2320,627
(C4×C52C8)⋊27C2 = D5×C4×C8φ: trivial image160(C4xC5:2C8):27C2320,311

Non-split extensions G=N.Q with N=C4×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C52C8).1C2 = C20.53D8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).1C2320,37
(C4×C52C8).2C2 = C20.39SD16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).2C2320,38
(C4×C52C8).3C2 = Dic104C8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).3C2320,42
(C4×C52C8).4C2 = C20.26Q16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).4C2320,93
(C4×C52C8).5C2 = Dic105C8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).5C2320,457
(C4×C52C8).6C2 = C42.198D10φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).6C2320,458
(C4×C52C8).7C2 = Q8×C52C8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).7C2320,650
(C4×C52C8).8C2 = C42.210D10φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).8C2320,651
(C4×C52C8).9C2 = C4×C5⋊Q16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).9C2320,656
(C4×C52C8).10C2 = C42.215D10φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).10C2320,691
(C4×C52C8).11C2 = C20.17D8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).11C2320,705
(C4×C52C8).12C2 = C20.SD16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).12C2320,706
(C4×C52C8).13C2 = C20.Q16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).13C2320,708
(C4×C52C8).14C2 = C203Q16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).14C2320,719
(C4×C52C8).15C2 = C20.11Q16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).15C2320,720
(C4×C52C8).16C2 = C42.279D10φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).16C2320,12
(C4×C52C8).17C2 = C408C8φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).17C2320,13
(C4×C52C8).18C2 = C20⋊C16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).18C2320,196
(C4×C52C8).19C2 = C42.9F5φ: C2/C1C2 ⊆ Out C4×C52C8804(C4xC5:2C8).19C2320,199
(C4×C52C8).20C2 = C4×C5⋊C16φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).20C2320,195
(C4×C52C8).21C2 = C42.4F5φ: C2/C1C2 ⊆ Out C4×C52C8320(C4xC5:2C8).21C2320,197
(C4×C52C8).22C2 = C8×C52C8φ: trivial image320(C4xC5:2C8).22C2320,11

׿
×
𝔽