Copied to
clipboard

G = D204C8order 320 = 26·5

2nd semidirect product of D20 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D204C8, C20.54D8, C20.49SD16, C42.192D10, C20.17M4(2), C4⋊C81D5, C54(D4⋊C8), C4.1(C8×D5), C10.22C4≀C2, C20.27(C2×C8), (C4×D20).6C2, C4.27(D4⋊D5), (C2×D20).23C4, (C2×C20).225D4, (C2×C4).109D20, C4.1(C8⋊D5), C4.15(Q8⋊D5), C4⋊Dic5.26C4, (C4×C20).41C22, C2.1(D206C4), C2.7(D101C8), C2.1(D207C4), C10.20(C22⋊C8), C10.18(D4⋊C4), C22.34(D10⋊C4), (C5×C4⋊C8)⋊1C2, (C4×C52C8)⋊1C2, (C2×C4).65(C4×D5), (C2×C20).221(C2×C4), (C2×C4).265(C5⋊D4), (C2×C10).109(C22⋊C4), SmallGroup(320,41)

Series: Derived Chief Lower central Upper central

C1C20 — D204C8
C1C5C10C2×C10C2×C20C4×C20C4×D20 — D204C8
C5C10C20 — D204C8
C1C2×C4C42C4⋊C8

Generators and relations for D204C8
 G = < a,b,c | a20=b2=c8=1, bab=a-1, cac-1=a11, cbc-1=a15b >

Subgroups: 374 in 82 conjugacy classes, 35 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C4×C8, C4⋊C8, C4×D4, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, D4⋊C8, C2×C52C8, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C2×D20, C4×C52C8, C5×C4⋊C8, C4×D20, D204C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, D5, C22⋊C4, C2×C8, M4(2), D8, SD16, D10, C22⋊C8, D4⋊C4, C4≀C2, C4×D5, D20, C5⋊D4, D4⋊C8, C8×D5, C8⋊D5, D10⋊C4, D4⋊D5, Q8⋊D5, D206C4, D101C8, D207C4, D204C8

Smallest permutation representation of D204C8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 110)(2 109)(3 108)(4 107)(5 106)(6 105)(7 104)(8 103)(9 102)(10 101)(11 120)(12 119)(13 118)(14 117)(15 116)(16 115)(17 114)(18 113)(19 112)(20 111)(21 46)(22 45)(23 44)(24 43)(25 42)(26 41)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(61 143)(62 142)(63 141)(64 160)(65 159)(66 158)(67 157)(68 156)(69 155)(70 154)(71 153)(72 152)(73 151)(74 150)(75 149)(76 148)(77 147)(78 146)(79 145)(80 144)(81 131)(82 130)(83 129)(84 128)(85 127)(86 126)(87 125)(88 124)(89 123)(90 122)(91 121)(92 140)(93 139)(94 138)(95 137)(96 136)(97 135)(98 134)(99 133)(100 132)
(1 144 27 133 111 76 41 95)(2 155 28 124 112 67 42 86)(3 146 29 135 113 78 43 97)(4 157 30 126 114 69 44 88)(5 148 31 137 115 80 45 99)(6 159 32 128 116 71 46 90)(7 150 33 139 117 62 47 81)(8 141 34 130 118 73 48 92)(9 152 35 121 119 64 49 83)(10 143 36 132 120 75 50 94)(11 154 37 123 101 66 51 85)(12 145 38 134 102 77 52 96)(13 156 39 125 103 68 53 87)(14 147 40 136 104 79 54 98)(15 158 21 127 105 70 55 89)(16 149 22 138 106 61 56 100)(17 160 23 129 107 72 57 91)(18 151 24 140 108 63 58 82)(19 142 25 131 109 74 59 93)(20 153 26 122 110 65 60 84)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,120)(12,119)(13,118)(14,117)(15,116)(16,115)(17,114)(18,113)(19,112)(20,111)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(61,143)(62,142)(63,141)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(81,131)(82,130)(83,129)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,140)(93,139)(94,138)(95,137)(96,136)(97,135)(98,134)(99,133)(100,132), (1,144,27,133,111,76,41,95)(2,155,28,124,112,67,42,86)(3,146,29,135,113,78,43,97)(4,157,30,126,114,69,44,88)(5,148,31,137,115,80,45,99)(6,159,32,128,116,71,46,90)(7,150,33,139,117,62,47,81)(8,141,34,130,118,73,48,92)(9,152,35,121,119,64,49,83)(10,143,36,132,120,75,50,94)(11,154,37,123,101,66,51,85)(12,145,38,134,102,77,52,96)(13,156,39,125,103,68,53,87)(14,147,40,136,104,79,54,98)(15,158,21,127,105,70,55,89)(16,149,22,138,106,61,56,100)(17,160,23,129,107,72,57,91)(18,151,24,140,108,63,58,82)(19,142,25,131,109,74,59,93)(20,153,26,122,110,65,60,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,120)(12,119)(13,118)(14,117)(15,116)(16,115)(17,114)(18,113)(19,112)(20,111)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(61,143)(62,142)(63,141)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(81,131)(82,130)(83,129)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,140)(93,139)(94,138)(95,137)(96,136)(97,135)(98,134)(99,133)(100,132), (1,144,27,133,111,76,41,95)(2,155,28,124,112,67,42,86)(3,146,29,135,113,78,43,97)(4,157,30,126,114,69,44,88)(5,148,31,137,115,80,45,99)(6,159,32,128,116,71,46,90)(7,150,33,139,117,62,47,81)(8,141,34,130,118,73,48,92)(9,152,35,121,119,64,49,83)(10,143,36,132,120,75,50,94)(11,154,37,123,101,66,51,85)(12,145,38,134,102,77,52,96)(13,156,39,125,103,68,53,87)(14,147,40,136,104,79,54,98)(15,158,21,127,105,70,55,89)(16,149,22,138,106,61,56,100)(17,160,23,129,107,72,57,91)(18,151,24,140,108,63,58,82)(19,142,25,131,109,74,59,93)(20,153,26,122,110,65,60,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,110),(2,109),(3,108),(4,107),(5,106),(6,105),(7,104),(8,103),(9,102),(10,101),(11,120),(12,119),(13,118),(14,117),(15,116),(16,115),(17,114),(18,113),(19,112),(20,111),(21,46),(22,45),(23,44),(24,43),(25,42),(26,41),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(61,143),(62,142),(63,141),(64,160),(65,159),(66,158),(67,157),(68,156),(69,155),(70,154),(71,153),(72,152),(73,151),(74,150),(75,149),(76,148),(77,147),(78,146),(79,145),(80,144),(81,131),(82,130),(83,129),(84,128),(85,127),(86,126),(87,125),(88,124),(89,123),(90,122),(91,121),(92,140),(93,139),(94,138),(95,137),(96,136),(97,135),(98,134),(99,133),(100,132)], [(1,144,27,133,111,76,41,95),(2,155,28,124,112,67,42,86),(3,146,29,135,113,78,43,97),(4,157,30,126,114,69,44,88),(5,148,31,137,115,80,45,99),(6,159,32,128,116,71,46,90),(7,150,33,139,117,62,47,81),(8,141,34,130,118,73,48,92),(9,152,35,121,119,64,49,83),(10,143,36,132,120,75,50,94),(11,154,37,123,101,66,51,85),(12,145,38,134,102,77,52,96),(13,156,39,125,103,68,53,87),(14,147,40,136,104,79,54,98),(15,158,21,127,105,70,55,89),(16,149,22,138,106,61,56,100),(17,160,23,129,107,72,57,91),(18,151,24,140,108,63,58,82),(19,142,25,131,109,74,59,93),(20,153,26,122,110,65,60,84)]])

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E···8L10A···10F20A···20H20I···20P40A···40P
order12222244444444445588888···810···1020···2020···2040···40
size1111202011112222202022444410···102···22···24···44···4

68 irreducible representations

dim1111111222222222222444
type+++++++++++
imageC1C2C2C2C4C4C8D4D5M4(2)D8SD16D10C4≀C2C4×D5D20C5⋊D4C8×D5C8⋊D5D4⋊D5Q8⋊D5D207C4
kernelD204C8C4×C52C8C5×C4⋊C8C4×D20C4⋊Dic5C2×D20D20C2×C20C4⋊C8C20C20C20C42C10C2×C4C2×C4C2×C4C4C4C4C4C2
# reps1111228222222444488224

Matrix representation of D204C8 in GL6(𝔽41)

4000000
0400000
0004000
0013500
000001
0000400
,
100000
21400000
0004000
0040000
000001
000010
,
21390000
20200000
00392800
0013200
00002626
00002615

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,35,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[21,20,0,0,0,0,39,20,0,0,0,0,0,0,39,13,0,0,0,0,28,2,0,0,0,0,0,0,26,26,0,0,0,0,26,15] >;

D204C8 in GAP, Magma, Sage, TeX

D_{20}\rtimes_4C_8
% in TeX

G:=Group("D20:4C8");
// GroupNames label

G:=SmallGroup(320,41);
// by ID

G=gap.SmallGroup(320,41);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,100,1123,570,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^15*b>;
// generators/relations

׿
×
𝔽