direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×C5⋊2C8, C42.205D10, C5⋊7(C8×D4), C20⋊7(C2×C8), (C5×D4)⋊4C8, C20⋊3C8⋊20C2, (C4×D4).15D5, (D4×C20).5C2, C4.214(D4×D5), C2.3(D4×Dic5), (D4×C10).21C4, C10.120(C4×D4), C20.373(C2×D4), C4⋊C4.11Dic5, C10.62(C8○D4), C10.48(C22×C8), (C4×C20).81C22, (C2×D4).11Dic5, C22⋊C4.7Dic5, C20.306(C4○D4), C20.55D4⋊24C2, (C2×C20).848C23, (C22×C4).309D10, C2.2(D4.Dic5), C4.133(D4⋊2D5), C23.16(C2×Dic5), (C22×C20).348C22, C22.22(C22×Dic5), C4⋊1(C2×C5⋊2C8), (C4×C5⋊2C8)⋊6C2, (C2×C10)⋊7(C2×C8), (C5×C4⋊C4).23C4, C22⋊1(C2×C5⋊2C8), C2.5(C22×C5⋊2C8), (C2×C20).335(C2×C4), (C22×C5⋊2C8)⋊18C2, (C5×C22⋊C4).16C4, (C2×C4).33(C2×Dic5), (C2×C4).790(C22×D5), (C22×C10).127(C2×C4), (C2×C10).286(C22×C4), (C2×C5⋊2C8).323C22, SmallGroup(320,637)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C2×C20 — C2×C5⋊2C8 — C22×C5⋊2C8 — D4×C5⋊2C8 |
Generators and relations for D4×C5⋊2C8
G = < a,b,c,d | a4=b2=c5=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 286 in 134 conjugacy classes, 77 normal (33 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C5⋊2C8, C5⋊2C8, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C8×D4, C2×C5⋊2C8, C2×C5⋊2C8, C2×C5⋊2C8, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, C4×C5⋊2C8, C20⋊3C8, C20.55D4, C22×C5⋊2C8, D4×C20, D4×C5⋊2C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, D5, C2×C8, C22×C4, C2×D4, C4○D4, Dic5, D10, C4×D4, C22×C8, C8○D4, C5⋊2C8, C2×Dic5, C22×D5, C8×D4, C2×C5⋊2C8, D4×D5, D4⋊2D5, C22×Dic5, C22×C5⋊2C8, D4×Dic5, D4.Dic5, D4×C5⋊2C8
(1 40 137 22)(2 33 138 23)(3 34 139 24)(4 35 140 17)(5 36 141 18)(6 37 142 19)(7 38 143 20)(8 39 144 21)(9 42 134 104)(10 43 135 97)(11 44 136 98)(12 45 129 99)(13 46 130 100)(14 47 131 101)(15 48 132 102)(16 41 133 103)(25 123 151 63)(26 124 152 64)(27 125 145 57)(28 126 146 58)(29 127 147 59)(30 128 148 60)(31 121 149 61)(32 122 150 62)(49 156 106 118)(50 157 107 119)(51 158 108 120)(52 159 109 113)(53 160 110 114)(54 153 111 115)(55 154 112 116)(56 155 105 117)(65 73 83 92)(66 74 84 93)(67 75 85 94)(68 76 86 95)(69 77 87 96)(70 78 88 89)(71 79 81 90)(72 80 82 91)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 145)(32 146)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 97)(48 98)(49 110)(50 111)(51 112)(52 105)(53 106)(54 107)(55 108)(56 109)(57 61)(58 62)(59 63)(60 64)(65 87)(66 88)(67 81)(68 82)(69 83)(70 84)(71 85)(72 86)(73 77)(74 78)(75 79)(76 80)(89 93)(90 94)(91 95)(92 96)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(153 157)(154 158)(155 159)(156 160)
(1 94 132 63 113)(2 114 64 133 95)(3 96 134 57 115)(4 116 58 135 89)(5 90 136 59 117)(6 118 60 129 91)(7 92 130 61 119)(8 120 62 131 93)(9 125 153 139 77)(10 78 140 154 126)(11 127 155 141 79)(12 80 142 156 128)(13 121 157 143 73)(14 74 144 158 122)(15 123 159 137 75)(16 76 138 160 124)(17 112 146 43 88)(18 81 44 147 105)(19 106 148 45 82)(20 83 46 149 107)(21 108 150 47 84)(22 85 48 151 109)(23 110 152 41 86)(24 87 42 145 111)(25 52 40 67 102)(26 103 68 33 53)(27 54 34 69 104)(28 97 70 35 55)(29 56 36 71 98)(30 99 72 37 49)(31 50 38 65 100)(32 101 66 39 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,40,137,22)(2,33,138,23)(3,34,139,24)(4,35,140,17)(5,36,141,18)(6,37,142,19)(7,38,143,20)(8,39,144,21)(9,42,134,104)(10,43,135,97)(11,44,136,98)(12,45,129,99)(13,46,130,100)(14,47,131,101)(15,48,132,102)(16,41,133,103)(25,123,151,63)(26,124,152,64)(27,125,145,57)(28,126,146,58)(29,127,147,59)(30,128,148,60)(31,121,149,61)(32,122,150,62)(49,156,106,118)(50,157,107,119)(51,158,108,120)(52,159,109,113)(53,160,110,114)(54,153,111,115)(55,154,112,116)(56,155,105,117)(65,73,83,92)(66,74,84,93)(67,75,85,94)(68,76,86,95)(69,77,87,96)(70,78,88,89)(71,79,81,90)(72,80,82,91), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,61)(58,62)(59,63)(60,64)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(153,157)(154,158)(155,159)(156,160), (1,94,132,63,113)(2,114,64,133,95)(3,96,134,57,115)(4,116,58,135,89)(5,90,136,59,117)(6,118,60,129,91)(7,92,130,61,119)(8,120,62,131,93)(9,125,153,139,77)(10,78,140,154,126)(11,127,155,141,79)(12,80,142,156,128)(13,121,157,143,73)(14,74,144,158,122)(15,123,159,137,75)(16,76,138,160,124)(17,112,146,43,88)(18,81,44,147,105)(19,106,148,45,82)(20,83,46,149,107)(21,108,150,47,84)(22,85,48,151,109)(23,110,152,41,86)(24,87,42,145,111)(25,52,40,67,102)(26,103,68,33,53)(27,54,34,69,104)(28,97,70,35,55)(29,56,36,71,98)(30,99,72,37,49)(31,50,38,65,100)(32,101,66,39,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,40,137,22)(2,33,138,23)(3,34,139,24)(4,35,140,17)(5,36,141,18)(6,37,142,19)(7,38,143,20)(8,39,144,21)(9,42,134,104)(10,43,135,97)(11,44,136,98)(12,45,129,99)(13,46,130,100)(14,47,131,101)(15,48,132,102)(16,41,133,103)(25,123,151,63)(26,124,152,64)(27,125,145,57)(28,126,146,58)(29,127,147,59)(30,128,148,60)(31,121,149,61)(32,122,150,62)(49,156,106,118)(50,157,107,119)(51,158,108,120)(52,159,109,113)(53,160,110,114)(54,153,111,115)(55,154,112,116)(56,155,105,117)(65,73,83,92)(66,74,84,93)(67,75,85,94)(68,76,86,95)(69,77,87,96)(70,78,88,89)(71,79,81,90)(72,80,82,91), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,61)(58,62)(59,63)(60,64)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,77)(74,78)(75,79)(76,80)(89,93)(90,94)(91,95)(92,96)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(153,157)(154,158)(155,159)(156,160), (1,94,132,63,113)(2,114,64,133,95)(3,96,134,57,115)(4,116,58,135,89)(5,90,136,59,117)(6,118,60,129,91)(7,92,130,61,119)(8,120,62,131,93)(9,125,153,139,77)(10,78,140,154,126)(11,127,155,141,79)(12,80,142,156,128)(13,121,157,143,73)(14,74,144,158,122)(15,123,159,137,75)(16,76,138,160,124)(17,112,146,43,88)(18,81,44,147,105)(19,106,148,45,82)(20,83,46,149,107)(21,108,150,47,84)(22,85,48,151,109)(23,110,152,41,86)(24,87,42,145,111)(25,52,40,67,102)(26,103,68,33,53)(27,54,34,69,104)(28,97,70,35,55)(29,56,36,71,98)(30,99,72,37,49)(31,50,38,65,100)(32,101,66,39,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,40,137,22),(2,33,138,23),(3,34,139,24),(4,35,140,17),(5,36,141,18),(6,37,142,19),(7,38,143,20),(8,39,144,21),(9,42,134,104),(10,43,135,97),(11,44,136,98),(12,45,129,99),(13,46,130,100),(14,47,131,101),(15,48,132,102),(16,41,133,103),(25,123,151,63),(26,124,152,64),(27,125,145,57),(28,126,146,58),(29,127,147,59),(30,128,148,60),(31,121,149,61),(32,122,150,62),(49,156,106,118),(50,157,107,119),(51,158,108,120),(52,159,109,113),(53,160,110,114),(54,153,111,115),(55,154,112,116),(56,155,105,117),(65,73,83,92),(66,74,84,93),(67,75,85,94),(68,76,86,95),(69,77,87,96),(70,78,88,89),(71,79,81,90),(72,80,82,91)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,145),(32,146),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,97),(48,98),(49,110),(50,111),(51,112),(52,105),(53,106),(54,107),(55,108),(56,109),(57,61),(58,62),(59,63),(60,64),(65,87),(66,88),(67,81),(68,82),(69,83),(70,84),(71,85),(72,86),(73,77),(74,78),(75,79),(76,80),(89,93),(90,94),(91,95),(92,96),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(153,157),(154,158),(155,159),(156,160)], [(1,94,132,63,113),(2,114,64,133,95),(3,96,134,57,115),(4,116,58,135,89),(5,90,136,59,117),(6,118,60,129,91),(7,92,130,61,119),(8,120,62,131,93),(9,125,153,139,77),(10,78,140,154,126),(11,127,155,141,79),(12,80,142,156,128),(13,121,157,143,73),(14,74,144,158,122),(15,123,159,137,75),(16,76,138,160,124),(17,112,146,43,88),(18,81,44,147,105),(19,106,148,45,82),(20,83,46,149,107),(21,108,150,47,84),(22,85,48,151,109),(23,110,152,41,86),(24,87,42,145,111),(25,52,40,67,102),(26,103,68,33,53),(27,54,34,69,104),(28,97,70,35,55),(29,56,36,71,98),(30,99,72,37,49),(31,50,38,65,100),(32,101,66,39,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5A | 5B | 8A | ··· | 8H | 8I | ··· | 8T | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | - | + | - | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | D4 | D5 | C4○D4 | D10 | Dic5 | Dic5 | D10 | Dic5 | C8○D4 | C5⋊2C8 | D4×D5 | D4⋊2D5 | D4.Dic5 |
kernel | D4×C5⋊2C8 | C4×C5⋊2C8 | C20⋊3C8 | C20.55D4 | C22×C5⋊2C8 | D4×C20 | C5×C22⋊C4 | C5×C4⋊C4 | D4×C10 | C5×D4 | C5⋊2C8 | C4×D4 | C20 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | D4 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 2 | 16 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 16 | 2 | 2 | 4 |
Matrix representation of D4×C5⋊2C8 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 22 |
0 | 0 | 26 | 1 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 26 | 1 |
10 | 0 | 0 | 0 |
29 | 37 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
32 | 10 | 0 | 0 |
32 | 9 | 0 | 0 |
0 | 0 | 14 | 0 |
0 | 0 | 0 | 14 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,26,0,0,22,1],[40,0,0,0,0,40,0,0,0,0,40,26,0,0,0,1],[10,29,0,0,0,37,0,0,0,0,1,0,0,0,0,1],[32,32,0,0,10,9,0,0,0,0,14,0,0,0,0,14] >;
D4×C5⋊2C8 in GAP, Magma, Sage, TeX
D_4\times C_5\rtimes_2C_8
% in TeX
G:=Group("D4xC5:2C8");
// GroupNames label
G:=SmallGroup(320,637);
// by ID
G=gap.SmallGroup(320,637);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^5=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations