Copied to
clipboard

G = D205C8order 320 = 26·5

3rd semidirect product of D20 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D205C8, C42.201D10, C56(C8×D4), C41(C8×D5), C206(C2×C8), C4⋊C818D5, D105(C2×C8), C52C830D4, (C4×D20).7C2, C10.76(C4×D4), C4.205(D4×D5), (C2×D20).24C4, C20.364(C2×D4), (C2×C8).216D10, C4⋊Dic5.30C4, D101C822C2, C10.52(C8○D4), (C4×C20).60C22, C10.35(C22×C8), D10⋊C4.21C4, C20.334(C4○D4), C2.2(D208C4), (C2×C20).831C23, (C2×C40).210C22, C4.53(Q82D5), C2.4(D20.2C4), (D5×C2×C8)⋊22C2, (C5×C4⋊C8)⋊15C2, (C4×C52C8)⋊4C2, C2.13(D5×C2×C8), (C2×C4).72(C4×D5), C22.48(C2×C4×D5), (C2×C20).331(C2×C4), (C2×C4×D5).347C22, (C2×Dic5).98(C2×C4), (C22×D5).74(C2×C4), (C2×C4).773(C22×D5), (C2×C10).187(C22×C4), (C2×C52C8).314C22, SmallGroup(320,461)

Series: Derived Chief Lower central Upper central

C1C10 — D205C8
C1C5C10C20C2×C20C2×C4×D5C4×D20 — D205C8
C5C10 — D205C8
C1C2×C4C4⋊C8

Generators and relations for D205C8
 G = < a,b,c | a20=b2=c8=1, bab=a-1, cac-1=a11, cbc-1=a10b >

Subgroups: 446 in 134 conjugacy classes, 61 normal (31 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, C20, D10, D10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C52C8, C52C8, C40, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C8×D4, C8×D5, C2×C52C8, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C2×D20, C4×C52C8, D101C8, C5×C4⋊C8, C4×D20, D5×C2×C8, D205C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, D5, C2×C8, C22×C4, C2×D4, C4○D4, D10, C4×D4, C22×C8, C8○D4, C4×D5, C22×D5, C8×D4, C8×D5, C2×C4×D5, D4×D5, Q82D5, D208C4, D5×C2×C8, D20.2C4, D205C8

Smallest permutation representation of D205C8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(58 60)(61 71)(62 70)(63 69)(64 68)(65 67)(72 80)(73 79)(74 78)(75 77)(81 97)(82 96)(83 95)(84 94)(85 93)(86 92)(87 91)(88 90)(98 100)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(121 127)(122 126)(123 125)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 154)(149 153)(150 152)
(1 159 69 28 115 122 42 87)(2 150 70 39 116 133 43 98)(3 141 71 30 117 124 44 89)(4 152 72 21 118 135 45 100)(5 143 73 32 119 126 46 91)(6 154 74 23 120 137 47 82)(7 145 75 34 101 128 48 93)(8 156 76 25 102 139 49 84)(9 147 77 36 103 130 50 95)(10 158 78 27 104 121 51 86)(11 149 79 38 105 132 52 97)(12 160 80 29 106 123 53 88)(13 151 61 40 107 134 54 99)(14 142 62 31 108 125 55 90)(15 153 63 22 109 136 56 81)(16 144 64 33 110 127 57 92)(17 155 65 24 111 138 58 83)(18 146 66 35 112 129 59 94)(19 157 67 26 113 140 60 85)(20 148 68 37 114 131 41 96)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,159,69,28,115,122,42,87)(2,150,70,39,116,133,43,98)(3,141,71,30,117,124,44,89)(4,152,72,21,118,135,45,100)(5,143,73,32,119,126,46,91)(6,154,74,23,120,137,47,82)(7,145,75,34,101,128,48,93)(8,156,76,25,102,139,49,84)(9,147,77,36,103,130,50,95)(10,158,78,27,104,121,51,86)(11,149,79,38,105,132,52,97)(12,160,80,29,106,123,53,88)(13,151,61,40,107,134,54,99)(14,142,62,31,108,125,55,90)(15,153,63,22,109,136,56,81)(16,144,64,33,110,127,57,92)(17,155,65,24,111,138,58,83)(18,146,66,35,112,129,59,94)(19,157,67,26,113,140,60,85)(20,148,68,37,114,131,41,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,97)(82,96)(83,95)(84,94)(85,93)(86,92)(87,91)(88,90)(98,100)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,159,69,28,115,122,42,87)(2,150,70,39,116,133,43,98)(3,141,71,30,117,124,44,89)(4,152,72,21,118,135,45,100)(5,143,73,32,119,126,46,91)(6,154,74,23,120,137,47,82)(7,145,75,34,101,128,48,93)(8,156,76,25,102,139,49,84)(9,147,77,36,103,130,50,95)(10,158,78,27,104,121,51,86)(11,149,79,38,105,132,52,97)(12,160,80,29,106,123,53,88)(13,151,61,40,107,134,54,99)(14,142,62,31,108,125,55,90)(15,153,63,22,109,136,56,81)(16,144,64,33,110,127,57,92)(17,155,65,24,111,138,58,83)(18,146,66,35,112,129,59,94)(19,157,67,26,113,140,60,85)(20,148,68,37,114,131,41,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(58,60),(61,71),(62,70),(63,69),(64,68),(65,67),(72,80),(73,79),(74,78),(75,77),(81,97),(82,96),(83,95),(84,94),(85,93),(86,92),(87,91),(88,90),(98,100),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(121,127),(122,126),(123,125),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,154),(149,153),(150,152)], [(1,159,69,28,115,122,42,87),(2,150,70,39,116,133,43,98),(3,141,71,30,117,124,44,89),(4,152,72,21,118,135,45,100),(5,143,73,32,119,126,46,91),(6,154,74,23,120,137,47,82),(7,145,75,34,101,128,48,93),(8,156,76,25,102,139,49,84),(9,147,77,36,103,130,50,95),(10,158,78,27,104,121,51,86),(11,149,79,38,105,132,52,97),(12,160,80,29,106,123,53,88),(13,151,61,40,107,134,54,99),(14,142,62,31,108,125,55,90),(15,153,63,22,109,136,56,81),(16,144,64,33,110,127,57,92),(17,155,65,24,111,138,58,83),(18,146,66,35,112,129,59,94),(19,157,67,26,113,140,60,85),(20,148,68,37,114,131,41,96)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A···8H8I···8P8Q8R8S8T10A···10F20A···20H20I···20P40A···40P
order12222222444444444444558···88···8888810···1020···2020···2040···40
size1111101010101111222210101010222···25···5101010102···22···24···44···4

80 irreducible representations

dim111111111122222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4C8D4D5C4○D4D10D10C8○D4C4×D5C8×D5D4×D5Q82D5D20.2C4
kernelD205C8C4×C52C8D101C8C5×C4⋊C8C4×D20D5×C2×C8C4⋊Dic5D10⋊C4C2×D20D20C52C8C4⋊C8C20C42C2×C8C10C2×C4C4C4C4C2
# reps11211224216222244816224

Matrix representation of D205C8 in GL5(𝔽41)

10000
004000
01700
000329
00009
,
400000
00100
01000
000400
000391
,
30000
032000
003200
000329
000239

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,40,7,0,0,0,0,0,32,0,0,0,0,9,9],[40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,40,39,0,0,0,0,1],[3,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32,23,0,0,0,9,9] >;

D205C8 in GAP, Magma, Sage, TeX

D_{20}\rtimes_5C_8
% in TeX

G:=Group("D20:5C8");
// GroupNames label

G:=SmallGroup(320,461);
// by ID

G=gap.SmallGroup(320,461);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,219,58,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations

׿
×
𝔽