Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=Dic5

Direct product G=NxQ with N=C2xQ8 and Q=Dic5
dρLabelID
C2xQ8xDic5320C2xQ8xDic5320,1483

Semidirect products G=N:Q with N=C2xQ8 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2xQ8):1Dic5 = C10.29C4wrC2φ: Dic5/C5C4 ⊆ Out C2xQ880(C2xQ8):1Dic5320,96
(C2xQ8):2Dic5 = C42:Dic5φ: Dic5/C5C4 ⊆ Out C2xQ8804(C2xQ8):2Dic5320,99
(C2xQ8):3Dic5 = C2xQ8:Dic5φ: Dic5/C10C2 ⊆ Out C2xQ8320(C2xQ8):3Dic5320,851
(C2xQ8):4Dic5 = (Q8xC10):16C4φ: Dic5/C10C2 ⊆ Out C2xQ8160(C2xQ8):4Dic5320,852
(C2xQ8):5Dic5 = (Q8xC10):17C4φ: Dic5/C10C2 ⊆ Out C2xQ8320(C2xQ8):5Dic5320,857
(C2xQ8):6Dic5 = C2xD4:2Dic5φ: Dic5/C10C2 ⊆ Out C2xQ880(C2xQ8):6Dic5320,862
(C2xQ8):7Dic5 = (D4xC10):21C4φ: Dic5/C10C2 ⊆ Out C2xQ8804(C2xQ8):7Dic5320,863
(C2xQ8):8Dic5 = (D4xC10):22C4φ: Dic5/C10C2 ⊆ Out C2xQ8804(C2xQ8):8Dic5320,867
(C2xQ8):9Dic5 = C10.422- 1+4φ: Dic5/C10C2 ⊆ Out C2xQ8160(C2xQ8):9Dic5320,1484

Non-split extensions G=N.Q with N=C2xQ8 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2xQ8).1Dic5 = C42.7D10φ: Dic5/C5C4 ⊆ Out C2xQ8160(C2xQ8).1Dic5320,98
(C2xQ8).2Dic5 = C20.5Q16φ: Dic5/C5C4 ⊆ Out C2xQ8320(C2xQ8).2Dic5320,104
(C2xQ8).3Dic5 = C42.3Dic5φ: Dic5/C5C4 ⊆ Out C2xQ8804(C2xQ8).3Dic5320,106
(C2xQ8).4Dic5 = C20.26Q16φ: Dic5/C10C2 ⊆ Out C2xQ8320(C2xQ8).4Dic5320,93
(C2xQ8).5Dic5 = C42.210D10φ: Dic5/C10C2 ⊆ Out C2xQ8320(C2xQ8).5Dic5320,651
(C2xQ8).6Dic5 = C2xC20.10D4φ: Dic5/C10C2 ⊆ Out C2xQ8160(C2xQ8).6Dic5320,853
(C2xQ8).7Dic5 = (D4xC10).24C4φ: Dic5/C10C2 ⊆ Out C2xQ8160(C2xQ8).7Dic5320,861
(C2xQ8).8Dic5 = C20.76C24φ: Dic5/C10C2 ⊆ Out C2xQ8804(C2xQ8).8Dic5320,1491
(C2xQ8).9Dic5 = Q8xC5:2C8φ: trivial image320(C2xQ8).9Dic5320,650
(C2xQ8).10Dic5 = C2xD4.Dic5φ: trivial image160(C2xQ8).10Dic5320,1490

׿
x
:
Z
F
o
wr
Q
<