Extensions 1→N→G→Q→1 with N=C2 and Q=D206C4

Direct product G=N×Q with N=C2 and Q=D206C4
dρLabelID
C2×D206C4160C2xD20:6C4320,592


Non-split extensions G=N.Q with N=C2 and Q=D206C4
extensionφ:Q→Aut NdρLabelID
C2.1(D206C4) = D204C8central extension (φ=1)160C2.1(D20:6C4)320,41
C2.2(D206C4) = C20.31C42central extension (φ=1)320C2.2(D20:6C4)320,87
C2.3(D206C4) = (C2×D20)⋊C4central stem extension (φ=1)80C2.3(D20:6C4)320,9
C2.4(D206C4) = C20.47D8central stem extension (φ=1)320C2.4(D20:6C4)320,40
C2.5(D206C4) = C4.D40central stem extension (φ=1)160C2.5(D20:6C4)320,43
C2.6(D206C4) = D4014C4central stem extension (φ=1)804C2.6(D20:6C4)320,46
C2.7(D206C4) = C40.5D4central stem extension (φ=1)160C2.7(D20:6C4)320,49
C2.8(D206C4) = C10.Q32central stem extension (φ=1)320C2.8(D20:6C4)320,50
C2.9(D206C4) = D40.6C4central stem extension (φ=1)804+C2.9(D20:6C4)320,53
C2.10(D206C4) = C40.8D4central stem extension (φ=1)1604-C2.10(D20:6C4)320,54
C2.11(D206C4) = D40.5C4central stem extension (φ=1)1604C2.11(D20:6C4)320,55

׿
×
𝔽