metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D40⋊14C4, C40.38D4, C8.22D20, C20.3SD16, Dic20⋊14C4, C8.1(C4×D5), C4.Q8⋊1D5, C5⋊3(D8⋊2C4), C40.62(C2×C4), (C2×C10).30D8, (C2×C8).41D10, (C2×C20).88D4, C4.7(Q8⋊D5), C20.4C8⋊4C2, D40⋊7C2.6C2, (C2×C40).47C22, C22.8(D4⋊D5), C4.1(D10⋊C4), C2.6(D20⋊6C4), C20.48(C22⋊C4), C10.19(D4⋊C4), (C5×C4.Q8)⋊1C2, (C2×C4).16(C5⋊D4), SmallGroup(320,46)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D40⋊14C4
G = < a,b,c | a40=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a15b >
Subgroups: 286 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, C20, D10, C2×C10, C4.Q8, M5(2), C4○D8, C40, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C2×C20, D8⋊2C4, C5⋊2C16, C40⋊C2, D40, Dic20, C5×C4⋊C4, C2×C40, C4○D20, C20.4C8, C5×C4.Q8, D40⋊7C2, D40⋊14C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D8, SD16, D10, D4⋊C4, C4×D5, D20, C5⋊D4, D8⋊2C4, D10⋊C4, D4⋊D5, Q8⋊D5, D20⋊6C4, D40⋊14C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 58)(2 57)(3 56)(4 55)(5 54)(6 53)(7 52)(8 51)(9 50)(10 49)(11 48)(12 47)(13 46)(14 45)(15 44)(16 43)(17 42)(18 41)(19 80)(20 79)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 70)(30 69)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 62)(38 61)(39 60)(40 59)
(2 12)(3 23)(4 34)(6 16)(7 27)(8 38)(10 20)(11 31)(14 24)(15 35)(18 28)(19 39)(22 32)(26 36)(30 40)(41 76 61 56)(42 47 62 67)(43 58 63 78)(44 69 64 49)(45 80 65 60)(46 51 66 71)(48 73 68 53)(50 55 70 75)(52 77 72 57)(54 59 74 79)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,58)(2,57)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,50)(10,49)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59), (2,12)(3,23)(4,34)(6,16)(7,27)(8,38)(10,20)(11,31)(14,24)(15,35)(18,28)(19,39)(22,32)(26,36)(30,40)(41,76,61,56)(42,47,62,67)(43,58,63,78)(44,69,64,49)(45,80,65,60)(46,51,66,71)(48,73,68,53)(50,55,70,75)(52,77,72,57)(54,59,74,79)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,58)(2,57)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,50)(10,49)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59), (2,12)(3,23)(4,34)(6,16)(7,27)(8,38)(10,20)(11,31)(14,24)(15,35)(18,28)(19,39)(22,32)(26,36)(30,40)(41,76,61,56)(42,47,62,67)(43,58,63,78)(44,69,64,49)(45,80,65,60)(46,51,66,71)(48,73,68,53)(50,55,70,75)(52,77,72,57)(54,59,74,79) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,58),(2,57),(3,56),(4,55),(5,54),(6,53),(7,52),(8,51),(9,50),(10,49),(11,48),(12,47),(13,46),(14,45),(15,44),(16,43),(17,42),(18,41),(19,80),(20,79),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,70),(30,69),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,62),(38,61),(39,60),(40,59)], [(2,12),(3,23),(4,34),(6,16),(7,27),(8,38),(10,20),(11,31),(14,24),(15,35),(18,28),(19,39),(22,32),(26,36),(30,40),(41,76,61,56),(42,47,62,67),(43,58,63,78),(44,69,64,49),(45,80,65,60),(46,51,66,71),(48,73,68,53),(50,55,70,75),(52,77,72,57),(54,59,74,79)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | 8B | 8C | 10A | ··· | 10F | 16A | 16B | 16C | 16D | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 10 | ··· | 10 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 40 | 2 | 2 | 8 | 8 | 40 | 2 | 2 | 2 | 2 | 4 | 2 | ··· | 2 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | SD16 | D8 | D10 | C4×D5 | D20 | C5⋊D4 | D8⋊2C4 | Q8⋊D5 | D4⋊D5 | D40⋊14C4 |
kernel | D40⋊14C4 | C20.4C8 | C5×C4.Q8 | D40⋊7C2 | D40 | Dic20 | C40 | C2×C20 | C4.Q8 | C20 | C2×C10 | C2×C8 | C8 | C8 | C2×C4 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 8 |
Matrix representation of D40⋊14C4 ►in GL6(𝔽241)
91 | 0 | 0 | 0 | 0 | 0 |
195 | 98 | 0 | 0 | 0 | 0 |
0 | 0 | 222 | 222 | 0 | 0 |
0 | 0 | 19 | 222 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 222 |
0 | 0 | 0 | 0 | 19 | 19 |
71 | 204 | 0 | 0 | 0 | 0 |
32 | 170 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 222 |
0 | 0 | 0 | 0 | 19 | 19 |
0 | 0 | 222 | 222 | 0 | 0 |
0 | 0 | 19 | 222 | 0 | 0 |
64 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 222 | 19 |
0 | 0 | 0 | 0 | 19 | 19 |
G:=sub<GL(6,GF(241))| [91,195,0,0,0,0,0,98,0,0,0,0,0,0,222,19,0,0,0,0,222,222,0,0,0,0,0,0,19,19,0,0,0,0,222,19],[71,32,0,0,0,0,204,170,0,0,0,0,0,0,0,0,222,19,0,0,0,0,222,222,0,0,19,19,0,0,0,0,222,19,0,0],[64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,222,19,0,0,0,0,19,19] >;
D40⋊14C4 in GAP, Magma, Sage, TeX
D_{40}\rtimes_{14}C_4
% in TeX
G:=Group("D40:14C4");
// GroupNames label
G:=SmallGroup(320,46);
// by ID
G=gap.SmallGroup(320,46);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,758,675,794,192,1684,851,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^15*b>;
// generators/relations