Extensions 1→N→G→Q→1 with N=C2×C16 and Q=D5

Direct product G=N×Q with N=C2×C16 and Q=D5
dρLabelID
D5×C2×C16160D5xC2xC16320,526

Semidirect products G=N:Q with N=C2×C16 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C16)⋊1D5 = D101C16φ: D5/C5C2 ⊆ Aut C2×C16160(C2xC16):1D5320,65
(C2×C16)⋊2D5 = D20.3C8φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16):2D5320,66
(C2×C16)⋊3D5 = D407C4φ: D5/C5C2 ⊆ Aut C2×C16160(C2xC16):3D5320,67
(C2×C16)⋊4D5 = D40.3C4φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16):4D5320,68
(C2×C16)⋊5D5 = C2×D80φ: D5/C5C2 ⊆ Aut C2×C16160(C2xC16):5D5320,529
(C2×C16)⋊6D5 = D807C2φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16):6D5320,531
(C2×C16)⋊7D5 = C2×C16⋊D5φ: D5/C5C2 ⊆ Aut C2×C16160(C2xC16):7D5320,530
(C2×C16)⋊8D5 = C2×C80⋊C2φ: D5/C5C2 ⊆ Aut C2×C16160(C2xC16):8D5320,527
(C2×C16)⋊9D5 = D20.6C8φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16):9D5320,528

Non-split extensions G=N.Q with N=C2×C16 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C16).1D5 = C40.88D4φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).1D5320,59
(C2×C16).2D5 = C40.78D4φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).2D5320,61
(C2×C16).3D5 = C8013C4φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).3D5320,62
(C2×C16).4D5 = C2×Dic40φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).4D5320,532
(C2×C16).5D5 = C80.6C4φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16).5D5320,64
(C2×C16).6D5 = C8014C4φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).6D5320,63
(C2×C16).7D5 = C80.9C4φ: D5/C5C2 ⊆ Aut C2×C161602(C2xC16).7D5320,57
(C2×C16).8D5 = C8017C4φ: D5/C5C2 ⊆ Aut C2×C16320(C2xC16).8D5320,60
(C2×C16).9D5 = C2×C52C32central extension (φ=1)320(C2xC16).9D5320,56
(C2×C16).10D5 = C16×Dic5central extension (φ=1)320(C2xC16).10D5320,58

׿
×
𝔽