Copied to
clipboard

G = C80.6C4order 320 = 26·5

1st non-split extension by C80 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C80.6C4, C4.18D40, C20.36D8, C40.14Q8, C16.1Dic5, C8.13Dic10, C22.1Dic20, (C2×C80).7C2, (C2×C16).5D5, (C2×C4).73D20, C20.56(C4⋊C4), (C2×C10).7Q16, C54(C8.4Q8), C40.112(C2×C4), (C2×C20).393D4, (C2×C8).311D10, C8.16(C2×Dic5), C2.5(C405C4), C40.6C4.1C2, C4.10(C4⋊Dic5), C10.16(C2.D8), (C2×C40).383C22, SmallGroup(320,64)

Series: Derived Chief Lower central Upper central

C1C40 — C80.6C4
C1C5C10C20C2×C20C2×C40C40.6C4 — C80.6C4
C5C10C20C40 — C80.6C4
C1C4C2×C4C2×C8C2×C16

Generators and relations for C80.6C4
 G = < a,b | a80=1, b4=a40, bab-1=a39 >

2C2
2C10
20C8
20C8
10M4(2)
10M4(2)
4C52C8
4C52C8
5C8.C4
5C8.C4
2C4.Dic5
2C4.Dic5
5C8.4Q8

Smallest permutation representation of C80.6C4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 96 61 116 41 136 21 156)(2 135 62 155 42 95 22 115)(3 94 63 114 43 134 23 154)(4 133 64 153 44 93 24 113)(5 92 65 112 45 132 25 152)(6 131 66 151 46 91 26 111)(7 90 67 110 47 130 27 150)(8 129 68 149 48 89 28 109)(9 88 69 108 49 128 29 148)(10 127 70 147 50 87 30 107)(11 86 71 106 51 126 31 146)(12 125 72 145 52 85 32 105)(13 84 73 104 53 124 33 144)(14 123 74 143 54 83 34 103)(15 82 75 102 55 122 35 142)(16 121 76 141 56 81 36 101)(17 160 77 100 57 120 37 140)(18 119 78 139 58 159 38 99)(19 158 79 98 59 118 39 138)(20 117 80 137 60 157 40 97)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,61,116,41,136,21,156)(2,135,62,155,42,95,22,115)(3,94,63,114,43,134,23,154)(4,133,64,153,44,93,24,113)(5,92,65,112,45,132,25,152)(6,131,66,151,46,91,26,111)(7,90,67,110,47,130,27,150)(8,129,68,149,48,89,28,109)(9,88,69,108,49,128,29,148)(10,127,70,147,50,87,30,107)(11,86,71,106,51,126,31,146)(12,125,72,145,52,85,32,105)(13,84,73,104,53,124,33,144)(14,123,74,143,54,83,34,103)(15,82,75,102,55,122,35,142)(16,121,76,141,56,81,36,101)(17,160,77,100,57,120,37,140)(18,119,78,139,58,159,38,99)(19,158,79,98,59,118,39,138)(20,117,80,137,60,157,40,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,61,116,41,136,21,156)(2,135,62,155,42,95,22,115)(3,94,63,114,43,134,23,154)(4,133,64,153,44,93,24,113)(5,92,65,112,45,132,25,152)(6,131,66,151,46,91,26,111)(7,90,67,110,47,130,27,150)(8,129,68,149,48,89,28,109)(9,88,69,108,49,128,29,148)(10,127,70,147,50,87,30,107)(11,86,71,106,51,126,31,146)(12,125,72,145,52,85,32,105)(13,84,73,104,53,124,33,144)(14,123,74,143,54,83,34,103)(15,82,75,102,55,122,35,142)(16,121,76,141,56,81,36,101)(17,160,77,100,57,120,37,140)(18,119,78,139,58,159,38,99)(19,158,79,98,59,118,39,138)(20,117,80,137,60,157,40,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,96,61,116,41,136,21,156),(2,135,62,155,42,95,22,115),(3,94,63,114,43,134,23,154),(4,133,64,153,44,93,24,113),(5,92,65,112,45,132,25,152),(6,131,66,151,46,91,26,111),(7,90,67,110,47,130,27,150),(8,129,68,149,48,89,28,109),(9,88,69,108,49,128,29,148),(10,127,70,147,50,87,30,107),(11,86,71,106,51,126,31,146),(12,125,72,145,52,85,32,105),(13,84,73,104,53,124,33,144),(14,123,74,143,54,83,34,103),(15,82,75,102,55,122,35,142),(16,121,76,141,56,81,36,101),(17,160,77,100,57,120,37,140),(18,119,78,139,58,159,38,99),(19,158,79,98,59,118,39,138),(20,117,80,137,60,157,40,97)]])

86 conjugacy classes

class 1 2A2B4A4B4C5A5B8A8B8C8D8E8F8G8H10A···10F16A···16H20A···20H40A···40P80A···80AF
order122444558888888810···1016···1620···2040···4080···80
size112112222222404040402···22···22···22···22···2

86 irreducible representations

dim11112222222222222
type+++-+++--+-++-
imageC1C2C2C4Q8D4D5D8Q16Dic5D10Dic10D20C8.4Q8D40Dic20C80.6C4
kernelC80.6C4C40.6C4C2×C80C80C40C2×C20C2×C16C20C2×C10C16C2×C8C8C2×C4C5C4C22C1
# reps121411222424488832

Matrix representation of C80.6C4 in GL2(𝔽241) generated by

570
9993
,
7728
109164
G:=sub<GL(2,GF(241))| [57,99,0,93],[77,109,28,164] >;

C80.6C4 in GAP, Magma, Sage, TeX

C_{80}._6C_4
% in TeX

G:=Group("C80.6C4");
// GroupNames label

G:=SmallGroup(320,64);
// by ID

G=gap.SmallGroup(320,64);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,176,184,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b|a^80=1,b^4=a^40,b*a*b^-1=a^39>;
// generators/relations

Export

Subgroup lattice of C80.6C4 in TeX

׿
×
𝔽